已知平面上三个向量a.b.c的模均为1.它们相互之间的夹角均为120°. ⊥c; (2)若|ka+b+c|>1 .求k的取值范围. ·c=a·c-b·c =|a|·|c|·cos120°-|b|·|c|·cos120°=0, ∴(a-b)⊥c. (2)解 |ka+b+c|>1|ka+b+c|2>1, ?k2a2+b2+c2+2ka·b+2ka·c+2b·c>1. ∵|a|=|b|=|c|=1.且a.b.c的夹角均为120°, ∴a2=b2=c2=1.a·b=b·c=a·c=-. ∴k2+1-2k>1,即k2-2k>0,∴k>2或k<0. 查看更多

 

题目列表(包括答案和解析)

已知平面上三个向量abc的模均为1,它们相互之间的夹角均为120°.

(1)求证:(a-b)⊥c;

(2)若|ka+b+c|>1,求实数k的取值范围.

查看答案和解析>>

已知平面上三个向量a、b、c的模均为1,它们相互之间的夹角均为120°.

(1)求证:(a-b)⊥c;

(2)若|ka+b+c|>1,求实数k的取值范围.

查看答案和解析>>

已知平面上三个向量abc的模均为1,它们相互之间的夹角均为120°.求证:(a-b)⊥c.

查看答案和解析>>

已知平面上三个向量a、b、c的模均为1,它们相互之间的夹角均为120°.

(1)求证:(a-b)⊥c;

(2)若|ka+b+c|>1 (k∈R),求k的取值范围.

查看答案和解析>>

已知平面上三个向量a、b、c的模均为1,它们相互之间的夹角均为120°.

(1)求证:(a-b)⊥c;

(2)若|ka+b+c|>1 (k∈R),求k的取值范围.

查看答案和解析>>


同步练习册答案