14.一袋中装有只红球和只黑球(所有球的形状.大小都相同).每一次从袋中摸出两只球.且每次摸球后均放回袋中. 现规定:摸出的两只球颜色不同则为中奖.设三次摸球恰有一次中奖的概率为.则当 ▲ 时.使得最大. 查看更多

 

题目列表(包括答案和解析)

从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(1)若抽取后又放回,抽3次,分别求恰2次为红球的概率及抽全三种颜色球的概率;
(2)若抽取后不放回,抽完红球所需次数为ξ,求ξ的分布列及期望.

查看答案和解析>>

从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;
(Ⅱ)若抽取后不放回,设抽完红球所需的次数为s4,求s4的分布列及期望.

查看答案和解析>>

从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(1)若抽取后又放回,抽3次,分别求恰2次为红球的概率及抽全三种颜色球的概率;
(2)若抽取后不放回,抽完红球所需次数为ξ,求ξ的分布列及期望.

查看答案和解析>>

从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;
(Ⅱ)若抽取后不放回,设抽完红球所需的次数为s4,求s4的分布列及期望.

查看答案和解析>>

从装有2只红球,2只白球和1只黑球的袋中逐一取球,已知每只球被抽取的可能性相同.
(Ⅰ)若抽取后又放回,抽取3次,求恰好抽到2次为红球的概率;
(Ⅱ)若抽取后不放回,设抽完红球所需的次数为s4,求s4的分布列及期望.

查看答案和解析>>


同步练习册答案