3.解决焦点弦问题时.应注意抛物线的定义和焦点弦的几何性质应用.注意抛物线上的点,焦点,,准线三者之间的联系. 同步练习 8.3抛物线方程及性质 [选择题] 查看更多

 

题目列表(包括答案和解析)

在圆中,直径所对的圆周角等于90°,解决问题时应怎样利用这一条件?

查看答案和解析>>

用图解法解决线性规划的一般步骤:

①分析并将已知数据________;②确定________;③确定________;④画出________;⑤画出所有的________;⑥找出________;⑦实际问题需要整数解时,应适当调整确定最优解.

查看答案和解析>>

鸡兔同笼

  你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一.大约在1 500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?

  你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?

  解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”.这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只).显然,鸡的只数就是35-12=23(只)了.

  这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.这种思维方法叫化归法.

  化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题.

1.古代《孙子算经》就有这么好的解法——化归法,这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.对此,谈谈你的看法.

2.我国古代数学研究一直处于领先地位,现在有所落后了,对此,我们不应只感叹古人的伟大,而更应该树立为科学而奋斗终身的信心,同学们,你们准备好了吗?

查看答案和解析>>

某市为了解决交通拥堵问题,一方面改建道路、加强管理,一方面控制汽车总量增长.交管部门拟从2012年1月起,在一段时间内,对新车上牌采用摇号(类似于抽签)的方法进行控制,制定如下方案:①每月进行一次摇号,从当月所有申请用户以及以前没有摇到号的申请用户中,摇出当月上牌的用户,摇到叼的用户不再参加以后的摇号;②当月没有摇到号的申请者自动加入下一个月的摇号,不必也不能重复申请.预计2012年1月申请车牌的用户有10a个,以后每个月又有a个新用户申请车牌;计划2012年1月车牌a个,以后每月发放车牌数比上月增加5%,以2012年1月为第一个月,设前n(n∈N*)个月申请车牌用户的总数为an,前n个月发放车牌的总数为bn,使得an>bn成立的最大正整数为n0.(参考数据:1.0516=2.18,1.0517=2.29,1.0518=2.41)
(1)求an,bn关于n的表达式,直接写出n0的值,说明n0的实际意义;
(2)当n≤n0,n∈N*时,设第n个月中签率为yn,求证:中签率yn随着n的增加而增大.(第n个月中签率=
第n个月发放车牌数第n个月参加摇号的用户数

查看答案和解析>>

在解决下列各问题的算法中,一定用到循环结构的是(  )
A、求函数f(x)=3x2-2x+1当x=5时的值
B、用二分法求
3
发近似值
C、求一个给定实数为半径的圆的面积
D、将给定的三个实数按从小到大排列

查看答案和解析>>


同步练习册答案