解: (1)① ------------------------2分 ②仍然成立 --------------------1分 在图(2)中证明如下 ∵四边形.四边形都是正方形 ∴ .. ∴-------------------------1分 ∴ (SAS)---------------------1分 ∴ 又∵ ∴ ∴ ∴ ----------------------------1分 (2)成立.不成立 -------------------2分 简要说明如下 ∵四边形.四边形都是矩形. 且...(.) ∴ . ∴ ∴---------------------------1分 ∴ 又∵ ∴ ∴ ∴ -----------------------------1分 (3)∵ ∴ 又∵.. ∴ ------------------1分 ∴ ---------------------------1分 查看更多

 

题目列表(包括答案和解析)

阅读下列材料,按要求解答问题。

1)观察下面两块三角尺,它们有一个共同的性质:∠A2B,我们由此出发来进

行思考。

在图(1)中,作斜边AB上的高CD,由于∠B30°,可知c2b,于是AD

BDc。由于△CDB∽△ACB,可知,即a2BD

同理b2c·AD。于是a2b2cBDAD)=c[(c]=ccb

c2bb

bc。对于图(2),由勾股定理有a2b2c2,由于bc,故有a2b2bc

这两块三角尺都具有性质a2b2bc

在△ABC中,如果一个内角等于另一个内角的2倍,我们就称这种三角形为倍角三角   

形。两块三角尺就都是特殊的倍角三角形。对于任意的倍角三角形,上面的性质仍然

成立吗?暂时把我们的设想作为一个猜测:

如图(3),在△ABC中,若∠CAB2ABC,则a2b2bc

在上述由三角尺的性质到猜想这一认识过程中,用到了下列四种数学思想方法中的哪  

一种?选出一个正确的并将其序号填在括号内………………………………………( 

①分类的思想方法  ②转化的思想方法  ③由特殊到一般的思想方法  ④数形结合的

思想方法

2)这个猜测是否正确?请证明。

 

查看答案和解析>>

27、如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

29、阅读探究题:数学课上,张老师向大家介绍了等腰三角形的基本知识:有两条边相等的三角形叫等腰三角形,如图1所示:在△ABC中,若AB=AC,则△ABC为等腰三角形且有∠B=∠C.此时,张老师出示了问题:如图2,四边形ABCD是正方形(正方形的四边相等,四个角都是直角),点E是边BC的中点.∠AEF=90°,且EF交∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:在线段AB上取AB的中点M,连接ME,则AM=EC,在此基础上,请聪明的同学们作进一步的研究:
(1)求出角∠AME的度数;
(2)你能在小明的思路下证明结论吗?
(3)小颖提出:如图3,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;

查看答案和解析>>


同步练习册答案