例1 对于任意实数m.等式 解: 例2 关于x的代数式.当x分别取1,2,-1时.y的值分别是4.7.10.求a,b,c的值. 解:根据题意.得 例3 已知都是关于x,y的某个二元一次方程的解.求这个二元一次方程. 解:设这个二元一次方程为 例4 已知等式 解:由已知条件得 比较对应项的系数.得 查看更多

 

题目列表(包括答案和解析)

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>

用“拆项法”解分式方程

  大家知道,解分式方程的基本方法是,把方程的两边同乘以各分母的最简公分母,化为整式方程来解,而对于一些特殊的分式方程来说,采用上述方法往往越解越繁.下面我们介绍一种简捷、明快的方法--拆项法.

  例:解方程

  解:先降低方程中各分式分子的次数,将原方程变形为

  即(4+)-(7+)=(1-)-(4-)

  整理得

  两边各自通分得

  

  ∴(x-2)(x-1)=(x-7)(x-6)

  即x2-3x+2=x2-13x+42

  也即10x=40  ∴x=4

  经检验知,x=4是原方程的根.

请你运用上述方法,解分式方程

查看答案和解析>>

对于命题如果∠1+∠2=,那么∠1≠∠2,能说明它是假命题的例子(反例)是

[  ]

A.∠1=,∠2=

B.∠1=,∠2=

C.∠1=∠2=

D.∠1=,∠2=

查看答案和解析>>

18、下列说法正确的个数有(  )
(1)对于任意锐角α,都有0<sinα<1和0<cosα<1
(2)对于任意锐角α1,α2,如果α1<α2,那么cosα1<cosα2
(3)如果sinα1<sinα2,那么锐角α1<锐角α2
(4)如果cotα1<cotα2,那么锐角α1>锐角α2

查看答案和解析>>

7、对假命题举反例时,应注意使反例(  )

查看答案和解析>>


同步练习册答案