定义:直接接触的物体间由于发生弹性形变而产生的力. 查看更多

 

题目列表(包括答案和解析)

①弹力的产生条件是接触和发生形变.发生形变的物体,由于要恢复原状,对跟它接触的物体会产生力的作用,这种力叫弹力,但相互接触的两个物体之间________有弹力.

②弹力的方向:绳子拉力的方向始终指向绳子的________方向;接触面间的压力或支持力的方向垂直于接触面,指向________的物体,杆中弹力方向不一定沿杆.

③弹力的大小:

弹簧的弹力在________内,可由胡克定律求出弹力大小,其表达式Fkx,其中各符号的物理意义:k表示弹簧的劲度系数,由弹簧本身的性质决定,x表示弹簧的形变量(伸长或缩小的长度).弹簧的弹力总是与弹簧的伸长量成正比只有在弹簧弹性限度内才成立.

查看答案和解析>>

 【选做题】本题包括A、B、C三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若三题都做,则按A、B两题评分.

A.(选修模块3—3)(12分)

(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。

  (A)用手捏面包,面包体积会缩小,说明分子之间有间隙。(   )

  (B)温度相同的氢气和氧气,氢气分子和氧气分子的平均速率相同。(   )

  (C)夏天荷叶上小水珠呈球状,是由于液体表面张力使其表面积具有收缩到最小趋势的缘故。(    )

  (D)自然界中进行的一切与热现象有关的宏观过程都具有方向性。(   )

(2)(4分)在“用油膜法估测分子的大小”的实验中,有下列操作步骤,请补充实验步骤的内容及实验步骤中的计算式:

  (A)用滴管将浓度为的油酸酒精溶液逐滴滴入量筒,记下的油酸酒精溶液的滴数

  (B)将痱子粉末均匀地撒在浅盘内的水面上,用滴管吸取浓度为的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足够大,且不与器壁接触为止,记下滴入的滴数

  (C)________________________________;

  (D)将画有油酸薄膜轮廓的玻璃板放在坐标纸上,以坐标纸上边长的正方形为单位,计算轮廓内正方形的个数

  (E)用上述测量的物理量可以估算出单个油酸分子的直径______

(3)如图所示,上端开口的光滑圆柱形气缸竖直放置,截面积为40cm2的活塞将

一定质量的气体和一形状不规则的固体A封闭在气缸内。在气缸内距缸底60cm   

处设有卡环ab,使活塞只能向上滑动。开始时活塞搁在ab上,缸内气体的压

强等于大气压强为p0=1.0×105Pa,温度为300K。现缓慢加热汽缸内气体,当

温度缓慢升高为330K,活塞恰好离开ab;当温度缓慢升高为360K时,活塞上

升了4cm。求:

(1)活塞的质量;

(2)整个过程中气体对外界做的功。

B.(选修模块3—4)(12分)

(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。

   (A)光速不变原理是狭义相对论的两个基本假设之一。(     )

   (B)拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度。(      )

   (C)光在介质中的速度大于光在真空中的速度。(     )

(D)变化的电场一定产生变化的磁场;变化的磁场一定产生变化的电场。(     )

   

(2)(4分)如图为一横波发生器的显示屏,可以显示出波由0点从左向右传播的图像,屏上每一小格长度为1cm。在t=0时刻横波发生器上能显示的波形如图所示。因为显示屏的局部故障,造成从水平位置A到B之间(不包括A、B两处)的波形无法被观察到(故障不影响波在发生器内传播)。此后的时间内,观察者看到波形相继传经B、C处,在t=5秒时,观察者看到C处恰好第三次(从C开始振动后算起)出现平衡位置,则该波的波速可能是

(A)3.6cm/s    (B)4.8cm/s

(C)6cm/s     (D)7.2cm/s

 

 

 

(3)(4分)如图所示,某同学用插针法测定一半圆形玻璃砖的折射率。在平铺的白纸上垂直纸面插大头针确定入射光线,并让入射光线过圆心,在玻璃砖(图中实线部分)另一侧垂直纸面插大头针,使挡住的像,连接。图中为分界面,虚线半圆与玻璃砖对称,分别是入射光线、折射光线与圆的交点,均垂直于法线并分别交法线于点。设的长度为的长度为的长度为的长度为,求:

①为较方便地表示出玻璃砖的折射率,需用刻度尺测量(用上述给  

出量的字母表示),

②玻璃砖的折射率

 

 

C.(选修模块3—5)(12分)

(1)下列说法中正确的是________

(A)X射线是处于激发态的原子核辐射出的

(B)放射性元素发生一次β衰变,原子序数增加1

(C)光电效应揭示了光具有粒子性,康普顿效应揭示了光具有波动性

(D)原子核的半衰期不仅与核内部自身因素有关,还与原子所处的化学状态 

有关

(2)氢原子的能级如图所示,当氢原子从n=4向n=2的能级跃迁时,辐射的光  

子照射在某金属上,刚好能发生光电效应,则该金属的逸出功为 ▲  eV。

现有一群处于n=5的能级的氢原子向低能级跃迁,在辐射出的各种频率的

光子中,能使该金属发生光电效应的频率共有  ▲    种。

 

(3)如图,质量为m的小球系于长L=0.8m的轻绳末端。绳的另一端

系于O点。将小球移到轻绳水平位置后释放,小球摆到最低点A

时,恰与原静止于水平面上的物块P相碰。碰后小球回摆,上升的

最高点为BAB的高度差为h=0.2m。已知P的质量为M=3m

P与水平面间的动摩擦因数为μ=0.25,小球与P的相互作用时间

极短。求P沿水平面滑行的距离。

 

 

查看答案和解析>>

 【选做题】本题包括A、B、C三小题,请选定其中两题,并在答题卡相应的答题区域内作答.若三题都做,则按A、B两题评分.

A.(选修模块3—3)(12分)

(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。

  (A)用手捏面包,面包体积会缩小,说明分子之间有间隙。(    )

  (B)温度相同的氢气和氧气,氢气分子和氧气分子的平均速率相同。(    )

  (C)夏天荷叶上小水珠呈球状,是由于液体表面张力使其表面积具有收缩到最小趋势的缘故。(    )

  (D)自然界中进行的一切与热现象有关的宏观过程都具有方向性。(    )

(2)(4分)在“用油膜法估测分子的大小”的实验中,有下列操作步骤,请补充实验步骤的内容及实验步骤中的计算式:

  (A)用滴管将浓度为的油酸酒精溶液逐滴滴入量筒,记下的油酸酒精溶液的滴数

  (B)将痱子粉末均匀地撒在浅盘内的水面上,用滴管吸取浓度为的油酸酒精溶液,逐滴向水面上滴入,直到油酸薄膜表面足够大,且不与器壁接触为止,记下滴入的滴数

  (C)________________________________;

  (D)将画有油酸薄膜轮廓的玻璃板放在坐标纸上,以坐标纸上边长的正方形为单位,计算轮廓内正方形的个数

  (E)用上述测量的物理量可以估算出单个油酸分子的直径______

(3)如图所示,上端开口的光滑圆柱形气缸竖直放置,截面积为40cm2的活塞将

一定质量的气体和一形状不规则的固体A封闭在气缸内。在气缸内距缸底60cm   

处设有卡环ab,使活塞只能向上滑动。开始时活塞搁在ab上,缸内气体的压

强等于大气压强为p0=1.0×105Pa,温度为300K。现缓慢加热汽缸内气体,当

温度缓慢升高为330K,活塞恰好离开ab;当温度缓慢升高为360K时,活塞上

升了4cm。求:

(1)活塞的质量;

(2)整个过程中气体对外界做的功。

B.(选修模块3—4)(12分)

(1)(4分)判断以下说法的正误,在相应的括号内打“√”或“×”。

   (A)光速不变原理是狭义相对论的两个基本假设之一。(      )

   (B)拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度。(      )

   (C)光在介质中的速度大于光在真空中的速度。(      )

(D)变化的电场一定产生变化的磁场;变化的磁场一定产生变化的电场。(      )

   

(2)(4分)如图为一横波发生器的显示屏,可以显示出波由0点从左向右传播的图像,屏上每一小格长度为1cm。在t=0时刻横波发生器上能显示的波形如图所示。因为显示屏的局部故障,造成从水平位置A到B之间(不包括A、B两处)的波形无法被观察到(故障不影响波在发生器内传播)。此后的时间内,观察者看到波形相继传经B、C处,在t=5秒时,观察者看到C处恰好第三次(从C开始振动后算起)出现平衡位置,则该波的波速可能是

(A)3.6cm/s    (B)4.8cm/s

(C)6cm/s     (D)7.2cm/s

 

 

 

(3)(4分)如图所示,某同学用插针法测定一半圆形玻璃砖的折射率。在平铺的白纸上垂直纸面插大头针确定入射光线,并让入射光线过圆心,在玻璃砖(图中实线部分)另一侧垂直纸面插大头针,使挡住的像,连接。图中为分界面,虚线半圆与玻璃砖对称,分别是入射光线、折射光线与圆的交点,均垂直于法线并分别交法线于点。设的长度为的长度为的长度为的长度为,求:

①为较方便地表示出玻璃砖的折射率,需用刻度尺测量(用上述给  

出量的字母表示),

②玻璃砖的折射率

 

 

C.(选修模块3—5)(12分)

(1)下列说法中正确的是________

(A)X射线是处于激发态的原子核辐射出的

(B)放射性元素发生一次β衰变,原子序数增加1

(C)光电效应揭示了光具有粒子性,康普顿效应揭示了光具有波动性

(D)原子核的半衰期不仅与核内部自身因素有关,还与原子所处的化学状态 

有关

(2)氢原子的能级如图所示,当氢原子从n=4向n=2的能级跃迁时,辐射的光  

子照射在某金属上,刚好能发生光电效应,则该金属的逸出功为 ▲  eV。

现有一群处于n=5的能级的氢原子向低能级跃迁,在辐射出的各种频率的

光子中,能使该金属发生光电效应的频率共有   ▲    种。

 

(3)如图,质量为m的小球系于长L=0.8m的轻绳末端。绳的另一端

系于O点。将小球移到轻绳水平位置后释放,小球摆到最低点A

时,恰与原静止于水平面上的物块P相碰。碰后小球回摆,上升的

最高点为BAB的高度差为h=0.2m。已知P的质量为M=3m

P与水平面间的动摩擦因数为μ=0.25,小球与P的相互作用时间

极短。求P沿水平面滑行的距离。

 

 

查看答案和解析>>

第二部分  牛顿运动定律

第一讲 牛顿三定律

一、牛顿第一定律

1、定律。惯性的量度

2、观念意义,突破“初态困惑”

二、牛顿第二定律

1、定律

2、理解要点

a、矢量性

b、独立作用性:ΣF → a ,ΣFx → ax 

c、瞬时性。合力可突变,故加速度可突变(与之对比:速度和位移不可突变);牛顿第二定律展示了加速度的决定式(加速度的定义式仅仅展示了加速度的“测量手段”)。

3、适用条件

a、宏观、低速

b、惯性系

对于非惯性系的定律修正——引入惯性力、参与受力分析

三、牛顿第三定律

1、定律

2、理解要点

a、同性质(但不同物体)

b、等时效(同增同减)

c、无条件(与运动状态、空间选择无关)

第二讲 牛顿定律的应用

一、牛顿第一、第二定律的应用

单独应用牛顿第一定律的物理问题比较少,一般是需要用其解决物理问题中的某一个环节。

应用要点:合力为零时,物体靠惯性维持原有运动状态;只有物体有加速度时才需要合力。有质量的物体才有惯性。a可以突变而v、s不可突变。

1、如图1所示,在马达的驱动下,皮带运输机上方的皮带以恒定的速度向右运动。现将一工件(大小不计)在皮带左端A点轻轻放下,则在此后的过程中(      

A、一段时间内,工件将在滑动摩擦力作用下,对地做加速运动

B、当工件的速度等于v时,它与皮带之间的摩擦力变为静摩擦力

C、当工件相对皮带静止时,它位于皮带上A点右侧的某一点

D、工件在皮带上有可能不存在与皮带相对静止的状态

解说:B选项需要用到牛顿第一定律,A、C、D选项用到牛顿第二定律。

较难突破的是A选项,在为什么不会“立即跟上皮带”的问题上,建议使用反证法(t → 0 ,a →  ,则ΣFx   ,必然会出现“供不应求”的局面)和比较法(为什么人跳上速度不大的物体可以不发生相对滑动?因为人是可以形变、重心可以调节的特殊“物体”)

此外,本题的D选项还要用到匀变速运动规律。用匀变速运动规律和牛顿第二定律不难得出

只有当L > 时(其中μ为工件与皮带之间的动摩擦因素),才有相对静止的过程,否则没有。

答案:A、D

思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,试求工件到达皮带右端的时间t(过程略,答案为5.5s)

进阶练习:在上面“思考”题中,将工件给予一水平向右的初速v0 ,其它条件不变,再求t(学生分以下三组进行)——

① v0 = 1m/s  (答:0.5 + 37/8 = 5.13s)

② v0 = 4m/s  (答:1.0 + 3.5 = 4.5s)

③ v0 = 1m/s  (答:1.55s)

2、质量均为m的两只钩码A和B,用轻弹簧和轻绳连接,然后挂在天花板上,如图2所示。试问:

① 如果在P处剪断细绳,在剪断瞬时,B的加速度是多少?

② 如果在Q处剪断弹簧,在剪断瞬时,B的加速度又是多少?

解说:第①问是常规处理。由于“弹簧不会立即发生形变”,故剪断瞬间弹簧弹力维持原值,所以此时B钩码的加速度为零(A的加速度则为2g)。

第②问需要我们反省这样一个问题:“弹簧不会立即发生形变”的原因是什么?是A、B两物的惯性,且速度v和位移s不能突变。但在Q点剪断弹簧时,弹簧却是没有惯性的(没有质量),遵从理想模型的条件,弹簧应在一瞬间恢复原长!即弹簧弹力突变为零。

答案:0 ;g 。

二、牛顿第二定律的应用

应用要点:受力较少时,直接应用牛顿第二定律的“矢量性”解题。受力比较多时,结合正交分解与“独立作用性”解题。

在难度方面,“瞬时性”问题相对较大。

1、滑块在固定、光滑、倾角为θ的斜面上下滑,试求其加速度。

解说:受力分析 → 根据“矢量性”定合力方向  牛顿第二定律应用

答案:gsinθ。

思考:如果斜面解除固定,上表仍光滑,倾角仍为θ,要求滑块与斜面相对静止,斜面应具备一个多大的水平加速度?(解题思路完全相同,研究对象仍为滑块。但在第二环节上应注意区别。答:gtgθ。)

进阶练习1:在一向右运动的车厢中,用细绳悬挂的小球呈现如图3所示的稳定状态,试求车厢的加速度。(和“思考”题同理,答:gtgθ。)

进阶练习2、如图4所示,小车在倾角为α的斜面上匀加速运动,车厢顶用细绳悬挂一小球,发现悬绳与竖直方向形成一个稳定的夹角β。试求小车的加速度。

解:继续贯彻“矢量性”的应用,但数学处理复杂了一些(正弦定理解三角形)。

分析小球受力后,根据“矢量性”我们可以做如图5所示的平行四边形,并找到相应的夹角。设张力T与斜面方向的夹角为θ,则

θ=(90°+ α)- β= 90°-(β-α)                 (1)

对灰色三角形用正弦定理,有

 =                                        (2)

解(1)(2)两式得:ΣF = 

最后运用牛顿第二定律即可求小球加速度(即小车加速度)

答: 。

2、如图6所示,光滑斜面倾角为θ,在水平地面上加速运动。斜面上用一条与斜面平行的细绳系一质量为m的小球,当斜面加速度为a时(a<ctgθ),小球能够保持相对斜面静止。试求此时绳子的张力T 。

解说:当力的个数较多,不能直接用平行四边形寻求合力时,宜用正交分解处理受力,在对应牛顿第二定律的“独立作用性”列方程。

正交坐标的选择,视解题方便程度而定。

解法一:先介绍一般的思路。沿加速度a方向建x轴,与a垂直的方向上建y轴,如图7所示(N为斜面支持力)。于是可得两方程

ΣFx = ma ,即Tx - Nx = ma

ΣFy = 0 , 即Ty + Ny = mg

代入方位角θ,以上两式成为

T cosθ-N sinθ = ma                       (1)

T sinθ + Ncosθ = mg                       (2)

这是一个关于T和N的方程组,解(1)(2)两式得:T = mgsinθ + ma cosθ

解法二:下面尝试一下能否独立地解张力T 。将正交分解的坐标选择为:x——斜面方向,y——和斜面垂直的方向。这时,在分解受力时,只分解重力G就行了,但值得注意,加速度a不在任何一个坐标轴上,是需要分解的。矢量分解后,如图8所示。

根据独立作用性原理,ΣFx = max

即:T - Gx = max

即:T - mg sinθ = m acosθ

显然,独立解T值是成功的。结果与解法一相同。

答案:mgsinθ + ma cosθ

思考:当a>ctgθ时,张力T的结果会变化吗?(从支持力的结果N = mgcosθ-ma sinθ看小球脱离斜面的条件,求脱离斜面后,θ条件已没有意义。答:T = m 。)

学生活动:用正交分解法解本节第2题“进阶练习2”

进阶练习:如图9所示,自动扶梯与地面的夹角为30°,但扶梯的台阶是水平的。当扶梯以a = 4m/s2的加速度向上运动时,站在扶梯上质量为60kg的人相对扶梯静止。重力加速度g = 10 m/s2,试求扶梯对人的静摩擦力f 。

解:这是一个展示独立作用性原理的经典例题,建议学生选择两种坐标(一种是沿a方向和垂直a方向,另一种是水平和竖直方向),对比解题过程,进而充分领会用牛顿第二定律解题的灵活性。

答:208N 。

3、如图10所示,甲图系着小球的是两根轻绳,乙图系着小球的是一根轻弹簧和轻绳,方位角θ已知。现将它们的水平绳剪断,试求:在剪断瞬间,两种情形下小球的瞬时加速度。

解说:第一步,阐明绳子弹力和弹簧弹力的区别。

(学生活动)思考:用竖直的绳和弹簧悬吊小球,并用竖直向下的力拉住小球静止,然后同时释放,会有什么现象?原因是什么?

结论——绳子的弹力可以突变而弹簧的弹力不能突变(胡克定律)。

第二步,在本例中,突破“绳子的拉力如何瞬时调节”这一难点(从即将开始的运动来反推)。

知识点,牛顿第二定律的瞬时性。

答案:a = gsinθ ;a = gtgθ 。

应用:如图11所示,吊篮P挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳被烧断瞬间,P、Q的加速度分别是多少?

解:略。

答:2g ;0 。

三、牛顿第二、第三定律的应用

要点:在动力学问题中,如果遇到几个研究对象时,就会面临如何处理对象之间的力和对象与外界之间的力问题,这时有必要引进“系统”、“内力”和“外力”等概念,并适时地运用牛顿第三定律。

在方法的选择方面,则有“隔离法”和“整体法”。前者是根本,后者有局限,也有难度,但常常使解题过程简化,使过程的物理意义更加明晰。

对N个对象,有N个隔离方程和一个(可能的)整体方程,这(N + 1)个方程中必有一个是通解方程,如何取舍,视解题方便程度而定。

补充:当多个对象不具有共同的加速度时,一般来讲,整体法不可用,但也有一种特殊的“整体方程”,可以不受这个局限(可以介绍推导过程)——

Σ= m1 + m2 + m3 + … + mn

其中Σ只能是系统外力的矢量和,等式右边也是矢量相加。

1、如图12所示,光滑水平面上放着一个长为L的均质直棒,现给棒一个沿棒方向的、大小为F的水平恒力作用,则棒中各部位的张力T随图中x的关系怎样?

解说:截取隔离对象,列整体方程和隔离方程(隔离右段较好)。

答案:N = x 。

思考:如果水平面粗糙,结论又如何?

解:分两种情况,(1)能拉动;(2)不能拉动。

第(1)情况的计算和原题基本相同,只是多了一个摩擦力的处理,结论的化简也麻烦一些。

第(2)情况可设棒的总质量为M ,和水平面的摩擦因素为μ,而F = μMg ,其中l<L ,则x<(L-l)的右段没有张力,x>(L-l)的左端才有张力。

答:若棒仍能被拉动,结论不变。

若棒不能被拉动,且F = μMg时(μ为棒与平面的摩擦因素,l为小于L的某一值,M为棒的总质量),当x<(L-l),N≡0 ;当x>(L-l),N = 〔x -〈L-l〉〕。

应用:如图13所示,在倾角为θ的固定斜面上,叠放着两个长方体滑块,它们的质量分别为m1和m2 ,它们之间的摩擦因素、和斜面的摩擦因素分别为μ1和μ2 ,系统释放后能够一起加速下滑,则它们之间的摩擦力大小为:

A、μ1 m1gcosθ ;    B、μ2 m1gcosθ ;

C、μ1 m2gcosθ ;    D、μ1 m2gcosθ ;

解:略。

答:B 。(方向沿斜面向上。)

思考:(1)如果两滑块不是下滑,而是以初速度v0一起上冲,以上结论会变吗?(2)如果斜面光滑,两滑块之间有没有摩擦力?(3)如果将下面的滑块换成如图14所示的盒子,上面的滑块换成小球,它们以初速度v0一起上冲,球应对盒子的哪一侧内壁有压力?

解:略。

答:(1)不会;(2)没有;(3)若斜面光滑,对两内壁均无压力,若斜面粗糙,对斜面上方的内壁有压力。

2、如图15所示,三个物体质量分别为m1 、m2和m3 ,带滑轮的物体放在光滑水平面上,滑轮和所有接触面的摩擦均不计,绳子的质量也不计,为使三个物体无相对滑动,水平推力F应为多少?

解说:

此题对象虽然有三个,但难度不大。隔离m2 ,竖直方向有一个平衡方程;隔离m1 ,水平方向有一个动力学方程;整体有一个动力学方程。就足以解题了。

答案:F =  。

思考:若将质量为m3物体右边挖成凹形,让m2可以自由摆动(而不与m3相碰),如图16所示,其它条件不变。是否可以选择一个恰当的F′,使三者无相对运动?如果没有,说明理由;如果有,求出这个F′的值。

解:此时,m2的隔离方程将较为复杂。设绳子张力为T ,m2的受力情况如图,隔离方程为:

 = m2a

隔离m,仍有:T = m1a

解以上两式,可得:a = g

最后用整体法解F即可。

答:当m1 ≤ m2时,没有适应题意的F′;当m1 > m2时,适应题意的F′=  。

3、一根质量为M的木棒,上端用细绳系在天花板上,棒上有一质量为m的猫,如图17所示。现将系木棒的绳子剪断,同时猫相对棒往上爬,但要求猫对地的高度不变,则棒的加速度将是多少?

解说:法一,隔离法。需要设出猫爪抓棒的力f ,然后列猫的平衡方程和棒的动力学方程,解方程组即可。

法二,“新整体法”。

据Σ= m1 + m2 + m3 + … + mn ,猫和棒的系统外力只有两者的重力,竖直向下,而猫的加速度a1 = 0 ,所以:

( M + m )g = m·0 + M a1 

解棒的加速度a1十分容易。

答案:g 。

四、特殊的连接体

当系统中各个体的加速度不相等时,经典的整体法不可用。如果各个体的加速度不在一条直线上,“新整体法”也将有一定的困难(矢量求和不易)。此时,我们回到隔离法,且要更加注意找各参量之间的联系。

解题思想:抓某个方向上加速度关系。方法:“微元法”先看位移关系,再推加速度关系。、

1、如图18所示,一质量为M 、倾角为θ的光滑斜面,放置在光滑的水平面上,另一个质量为m的滑块从斜面顶端释放,试求斜面的加速度。

解说:本题涉及两个物体,它们的加速度关系复杂,但在垂直斜面方向上,大小是相等的。对两者列隔离方程时,务必在这个方向上进行突破。

(学生活动)定型判断斜面的运动情况、滑块的运动情况。

位移矢量示意图如图19所示。根据运动学规律,加速度矢量a1和a2也具有这样的关系。

(学生活动)这两个加速度矢量有什么关系?

沿斜面方向、垂直斜面方向建x 、y坐标,可得:

a1y = a2y             ①

且:a1y = a2sinθ     ②

隔离滑块和斜面,受力图如图20所示。

对滑块,列y方向隔离方程,有:

mgcosθ- N = ma1y     ③

对斜面,仍沿合加速度a2方向列方程,有:

Nsinθ= Ma2          ④

解①②③④式即可得a2 。

答案:a2 =  。

(学生活动)思考:如何求a1的值?

解:a1y已可以通过解上面的方程组求出;a1x只要看滑块的受力图,列x方向的隔离方程即可,显然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后据a1 = 求a1 。

答:a1 =  。

2、如图21所示,与水平面成θ角的AB棒上有一滑套C ,可以无摩擦地在棒上滑动,开始时与棒的A端相距b ,相对棒静止。当棒保持倾角θ不变地沿水平面匀加速运动,加速度为a(且a>gtgθ)时,求滑套C从棒的A端滑出所经历的时间。

解说:这是一个比较特殊的“连接体问题”,寻求运动学参量的关系似乎比动力学分析更加重要。动力学方面,只需要隔离滑套C就行了。

(学生活动)思考:为什么题意要求a>gtgθ?(联系本讲第二节第1题之“思考题”)

定性绘出符合题意的运动过程图,如图22所示:S表示棒的位移,S1表示滑套的位移。沿棒与垂直棒建直角坐标后,S1x表示S1在x方向上的分量。不难看出:

S1x + b = S cosθ                   ①

设全程时间为t ,则有:

S = at2                          ②

S1x = a1xt2                        ③

而隔离滑套,受力图如图23所示,显然:

mgsinθ= ma1x                       ④

解①②③④式即可。

答案:t = 

另解:如果引进动力学在非惯性系中的修正式 Σ* = m (注:*为惯性力),此题极简单。过程如下——

以棒为参照,隔离滑套,分析受力,如图24所示。

注意,滑套相对棒的加速度a是沿棒向上的,故动力学方程为:

F*cosθ- mgsinθ= ma            (1)

其中F* = ma                      (2)

而且,以棒为参照,滑套的相对位移S就是b ,即:

b = S = a t2                 (3)

解(1)(2)(3)式就可以了。

第二讲 配套例题选讲

教材范本:龚霞玲主编《奥林匹克物理思维训练教材》,知识出版社,2002年8月第一版。

例题选讲针对“教材”第三章的部分例题和习题。

查看答案和解析>>


同步练习册答案