解:(1)∵方程f (x)-x=0的两根为x1.x2, ∴(x2-x1)2=(x2+x1)2-4x1x2=b2-2b+1-4c. ∵x2-x1>1,∴b2-2b+1-4c>1. ∴b2>2(b+2c). (2)∵x1是方程f (x)-x=0的根.∴x1=f (x1). ∴f (t)-x1=f (t)-f (x1)=(t-x1)(t+x1+b)=(t-x1)(t+1-x2). ∵0<t<x1,∴t-x1<0. ∵x2-x1>1,∴x1+1-x2<0. ∴t+1-x2<x1+1-x2<0.故f (t)-x1>0. (3)∵x∈[-1,1]时.恒有|f (x)|≤1, ∴|f (0)|=|c|≤1,|f (1)|=|1+b+c|≤1. ∴|1+b|=|1+b+c-c|≤|1+b+c|+|-c|=|1+b+c|+|c|≤1+1=2. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=x4+ax3+bx2+c,其图象在y轴上的截距为-5,在区间[0,1]上单调递增,在[1,2]上单调递减,又当x=0,x=2时取得极小值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)能否找到垂直于x轴的直线,使函数f(x)的图象关于此直线对称,并证明你的结论;
*(Ⅲ)设使关于x的方程f(x)=λ2x2-5恰有三个不同实根的实数λ的取值范围为集合A,且两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+2≤|x1-x2|对任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=x4+ax3+bx2+c,其图象在y轴上的截距为-5,在区间[0,1]上单调递增,在[1,2]上单调递减,又当x=0,x=2时取得极小值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)能否找到垂直于x轴的直线,使函数f(x)的图象关于此直线对称,并证明你的结论;
*(Ⅲ)设使关于x的方程f(x)=λ2x2-5恰有三个不同实根的实数λ的取值范围为集合A,且两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+2≤|x1-x2|对任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=x4+ax3+bx2+c,其图象在y轴上的截距为-5,在区间[0,1]上单调递增,在[1,2]上单调递减,又当x=0,x=2时取得极小值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)能否找到垂直于x轴的直线,使函数f(x)的图象关于此直线对称,并证明你的结论;
*(Ⅲ)设使关于x的方程f(x)=λ2x2-5恰有三个不同实根的实数λ的取值范围为集合A,且两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+2≤|x1-x2|对任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=x4+ax3+bx2+c,其图象在y轴上的截距为-5,在区间[0,1]上单调递增,在[1,2]上单调递减,又当x=0,x=2时取得极小值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)能否找到垂直于x轴的直线,使函数f(x)的图象关于此直线对称,并证明你的结论;
*(Ⅲ)设使关于x的方程f(x)=λ2x2-5恰有三个不同实根的实数λ的取值范围为集合A,且两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+2≤|x1-x2|对任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=x4+ax3+bx2+c,其图象在y轴上的截距为-5,在区间[0,1]上单调递增,在[1,2]上单调递减,又当x=0,x=2时取得极小值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)能否找到垂直于x轴的直线,使函数f(x)的图象关于此直线对称,并证明你的结论;
*(Ⅲ)设使关于x的方程f(x)=λ2x2-5恰有三个不同实根的实数λ的取值范围为集合A,且两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+2≤|x1-x2|对任意t∈[-3,3],λ∈A恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>


同步练习册答案