5.对椭圆方程作三角换元即得椭圆的参数方程: ,注意θ不是∠xOP(x,y). 查看更多

 

题目列表(包括答案和解析)

已知椭圆的中心在原点,焦点在x轴上,F1、F2分别为左、右焦点,椭圆的一个顶点与两焦点构成等边三角形,且|
F1F2
|=2.
(1)求椭圆方程;
(2)对于x轴上的某一点T,过T作不与坐标轴平行的直线L交椭圆于P、Q两点,若存在x轴上的点S,使得对符合条件的L恒有∠PST=∠QST成立,我们称S为T的一个配对点,当T为左焦点时,求T 的配对点的坐标;
(3)在(2)条件下讨论当T在何处时,存在有配对点?

查看答案和解析>>

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1
的左、右两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标.
(2)已知圆心在原点的圆具有性质:若M、N是圆上关于原点对称的两点,点P是圆上的任意一点,当直线PM、PN的斜率都存在,并记作KPM、KPN那么KPMKPN=-1.试对椭圆
x2
a2
+
y2
b2
=1
写出类似的性质,并加以证明.

查看答案和解析>>

设F1、F2分别为椭圆C:的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标.
(2)已知圆心在原点的圆具有性质:若M、N是圆上关于原点对称的两点,点P是圆上的任意一点,当直线PM、PN的斜率都存在,并记作KPM、KPN那么KPMKPN=-1.试对椭圆写出类似的性质,并加以证明.

查看答案和解析>>

设F1、F2分别为椭圆C:的左、右两个焦点.
(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标.
(2)已知圆心在原点的圆具有性质:若M、N是圆上关于原点对称的两点,点P是圆上的任意一点,当直线PM、PN的斜率都存在,并记作KPM、KPN那么KPMKPN=-1.试对椭圆写出类似的性质,并加以证明.

查看答案和解析>>

设F1、F2分别为椭圆C:
x2
a2
+
y2
b2
=1
的左、右两个焦点.
(1)若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标.
(2)已知圆心在原点的圆具有性质:若M、N是圆上关于原点对称的两点,点P是圆上的任意一点,当直线PM、PN的斜率都存在,并记作KPM、KPN那么KPMKPN=-1.试对椭圆
x2
a2
+
y2
b2
=1
写出类似的性质,并加以证明.

查看答案和解析>>


同步练习册答案