题目列表(包括答案和解析)
| 6S3 | ||
πη2
|
| 6S3 | ||
πη2
|
| 1 |
| 6 |
(选修3-5)
(1)以下是有关近代物理内容的若干叙述:
A.紫外线照射到金属锌板表面时能够光电效应,则当增大紫外线的照射强度时,从锌板表面逸出的光电子的最大初动能也随之增大
B.康普顿效应揭示了光的粒子性
C.核子结合成原子核一定有质量亏损,释放出能量
D.太阳内部发生的核反应是热核反应
E.有10个放射性元素的原子核,当有5个原子核发生衰变所需的时间就是该放射性元素的半衰期
F.用
粒子轰击铍核(
),可以得到碳核(
)和质子
G.氢原子的核外电子由较高能级迁到较低能级时,要释放一定频率的光子,同时电子的动能增大,电势能减小
H.在光的单缝衍射实验中,狭缝交窄,光子动量的不确定量变大
其中正确的有 .
(2)如图所示是使用光电管的原理图。当频率为v的可见光照射到阴极K上时,电流表中有电流通过.
①当变阻器的滑动端P向滑动时(填“左”或“右”),通过电流表的电流将会减小。
②当电流表电流刚减小到零时,电压表的读数为U,则光电子的最大初动能为 (已知电子电荷量为e).
③如果不改变入射光的频率,而增加入射光的强度,则光电子的最大初动能将_______ (填“增加”、“减小”或“不变”).
(3)有两个质量为m的均处于基态的氢原子A、B,A静止,B以速度v0与之发生碰撞.己知:碰撞前后二者的速度均在一条直线上,碰撞过程中部分动能有可能被某一氢原子吸收,从而该原子由基态跃迁到激发态,然后,此原子向低能级态跃迁,并发出光子.若氢原子碰撞后发出一个光子,则速度v0至少需要多大?已知氢原子的基态能量为E1(E1<0).
![]()
①小翔利用如图甲所示的装置,探究弹簧弹力F与伸长量△l的关系,由实验绘出F与△l的关系图线如图乙所示,该弹簧劲度系数为 N/m。
②小丽用如图丙所示的装置验证“力的平行四边形定则”。用一木板竖直放在铁架台和弹簧所在平面后。其部分实验操作如下,请完成下列相关内容:
A. 如图丙,在木板上记下悬挂两个钩码时弹簧末端的位置O;
B. 卸下钩码然后将两绳套系在弹簧下端,用两弹簧称将弹簧末端拉到同一位置O,记录细绳套AO、BO的 及两弹簧称相应的读数。图丁中B弹簧称的读数为 N;
C. 小丽在坐标纸上画出两弹簧拉力FA、FB的大小和方向如图丁所示,请在图戊中作出FA、FB的合力F’;
D. 已知钩码的重力,可得弹簧所受的拉力F如图戊所示,观察比较F和F’,得出结论。
![]()
![]()
(2)用发光二极管制成的LED灯具有发光效率高、使用寿命长等优点,在生产与生活中得到广泛应用。某同学找到一个LED灯泡,研究它的特性,测得它两端电压U和通过的电流I,数据如下表:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
| U/V | 0.00 | … | … | … | 2.60 | 2.72 | 2.80 | 2.92 | 3.00 | 3.17 | 3.30 | 3.50 |
| I/mA | 0.00 | … | … | … | 1.29 | 5.77 | 8.71 | 19.05 | 27.30 | 38.86 | 50.63 | 68.00 |
①实验室提供的器材如下:
A. 电流表(量程0-0.6A,内阻约1Ω)
B. 电流表(量程0-100mA,内阻约50Ω)
C. 电压表(量程0-6V,内阻约50kΩ)
D. 电压表(量程0-15V,内阻约60kΩ)
E. 电源(电动势6V,内阻不计)
F. 滑动变阻器(阻值范围0-10Ω,允许最大电流3A)
G. 开关,导线
该同学做实验时,电压表选用的是 ,电流表选用的是 (填选项字母);
②请在右图中以笔划线代替导线,按实验要求将实物图中的连线补充完整;
③开关S闭合之前,右图中滑动变阻器的滑片应该置于 (选填“A端”、“B端”或“AB正中间”)。
④若该LED灯泡的额定电压为3V,则此LED灯泡的额定功率为 。
![]()
第十部分 磁场
第一讲 基本知识介绍
《磁场》部分在奥赛考刚中的考点很少,和高考要求的区别不是很大,只是在两处有深化:a、电流的磁场引进定量计算;b、对带电粒子在复合场中的运动进行了更深入的分析。
一、磁场与安培力
1、磁场
a、永磁体、电流磁场→磁现象的电本质
b、磁感强度、磁通量
c、稳恒电流的磁场
*毕奥-萨伐尔定律(Biot-Savart law):对于电流强度为I 、长度为dI的导体元段,在距离为r的点激发的“元磁感应强度”为dB 。矢量式d
= k
,(d
表示导体元段的方向沿电流的方向、
为导体元段到考查点的方向矢量);或用大小关系式dB = k
结合安培定则寻求方向亦可。其中 k = 1.0×10?7N/A2 。应用毕萨定律再结合矢量叠加原理,可以求解任何形状导线在任何位置激发的磁感强度。
毕萨定律应用在“无限长”直导线的结论:B = 2k
;
*毕萨定律应用在环形电流垂直中心轴线上的结论:B = 2πkI
;
*毕萨定律应用在“无限长”螺线管内部的结论:B = 2πknI 。其中n为单位长度螺线管的匝数。
2、安培力
a、对直导体,矢量式为
= I
;或表达为大小关系式 F = BILsinθ再结合“左手定则”解决方向问题(θ为B与L的夹角)。
b、弯曲导体的安培力
⑴整体合力
折线导体所受安培力的合力等于连接始末端连线导体(电流不变)的的安培力。
证明:参照图9-1,令MN段导体的安培力F1与NO段导体的安培力F2的合力为F,则F的大小为
F = ![]()
= BI![]()
= BI![]()
关于F的方向,由于ΔFF2P∽ΔMNO,可以证明图9-1中的两个灰色三角形相似,这也就证明了F是垂直MO的,再由于ΔPMO是等腰三角形(这个证明很容易),故F在MO上的垂足就是MO的中点了。
证毕。
由于连续弯曲的导体可以看成是无穷多元段直线导体的折合,所以,关于折线导体整体合力的结论也适用于弯曲导体。(说明:这个结论只适用于匀强磁场。)
⑵导体的内张力
弯曲导体在平衡或加速的情形下,均会出现内张力,具体分析时,可将导体在被考查点切断,再将被切断的某一部分隔离,列平衡方程或动力学方程求解。
c、匀强磁场对线圈的转矩
如图9-2所示,当一个矩形线圈(线圈面积为S、通以恒定电流I)放入匀强磁场中,且磁场B的方向平行线圈平面时,线圈受安培力将转动(并自动选择垂直B的中心轴OO′,因为质心无加速度),此瞬时的力矩为
M = BIS
几种情形的讨论——
⑴增加匝数至N ,则 M = NBIS ;
⑵转轴平移,结论不变(证明从略);
⑶线圈形状改变,结论不变(证明从略);
![]()
*⑷磁场平行线圈平面相对原磁场方向旋转α角,则M = BIScosα ,如图9-3;
证明:当α = 90°时,显然M = 0 ,而磁场是可以分解的,只有垂直转轴的的分量Bcosα才能产生力矩…
⑸磁场B垂直OO′轴相对线圈平面旋转β角,则M = BIScosβ ,如图9-4。
证明:当β = 90°时,显然M = 0 ,而磁场是可以分解的,只有平行线圈平面的的分量Bcosβ才能产生力矩…
说明:在默认的情况下,讨论线圈的转矩时,认为线圈的转轴垂直磁场。如果没有人为设定,而是让安培力自行选定转轴,这时的力矩称为力偶矩。
二、洛仑兹力
1、概念与规律
a、
= q
,或展开为f = qvBsinθ再结合左、右手定则确定方向(其中θ为
与
的夹角)。安培力是大量带电粒子所受洛仑兹力的宏观体现。
b、能量性质
由于
总垂直
与
确定的平面,故
总垂直
,只能起到改变速度方向的作用。结论:洛仑兹力可对带电粒子形成冲量,却不可能做功。或:洛仑兹力可使带电粒子的动量发生改变却不能使其动能发生改变。
问题:安培力可以做功,为什么洛仑兹力不能做功?
解说:应该注意“安培力是大量带电粒子所受洛仑兹力的宏观体现”这句话的确切含义——“宏观体现”和“完全相等”是有区别的。我们可以分两种情形看这个问题:(1)导体静止时,所有粒子的洛仑兹力的合力等于安培力(这个证明从略);(2)导体运动时,粒子参与的是沿导体棒的运动v1和导体运动v2的合运动,其合速度为v ,这时的洛仑兹力f垂直v而安培力垂直导体棒,它们是不可能相等的,只能说安培力是洛仑兹力的分力f1 = qv1B的合力(见图9-5)。
![]()
很显然,f1的合力(安培力)做正功,而f不做功(或者说f1的正功和f2的负功的代数和为零)。(事实上,由于电子定向移动速率v1在10?5m/s数量级,而v2一般都在10?2m/s数量级以上,致使f1只是f的一个极小分量。)
☆如果从能量的角度看这个问题,当导体棒放在光滑的导轨上时(参看图9-6),导体棒必获得动能,这个动能是怎么转化来的呢?
若先将导体棒卡住,回路中形成稳恒的电流,电流的功转化为回路的焦耳热。而将导体棒释放后,导体棒受安培力加速,将形成感应电动势(反电动势)。动力学分析可知,导体棒的最后稳定状态是匀速运动(感应电动势等于电源电动势,回路电流为零)。由于达到稳定速度前的回路电流是逐渐减小的,故在相同时间内发的焦耳热将比导体棒被卡住时少。所以,导体棒动能的增加是以回路焦耳热的减少为代价的。
2、仅受洛仑兹力的带电粒子运动
a、
⊥
时,匀速圆周运动,半径r =
,周期T = ![]()
b、
与
成一般夹角θ时,做等螺距螺旋运动,半径r =
,螺距d = ![]()
这个结论的证明一般是将
分解…(过程从略)。
☆但也有一个问题,如果将
分解(成垂直速度分量B2和平行速度分量B1 ,如图9-7所示),粒子的运动情形似乎就不一样了——在垂直B2的平面内做圆周运动?
其实,在图9-7中,B1平行v只是一种暂时的现象,一旦受B2的洛仑兹力作用,v改变方向后就不再平行B1了。当B1施加了洛仑兹力后,粒子的“圆周运动”就无法达成了。(而在分解v的处理中,这种局面是不会出现的。)
3、磁聚焦
a、结构:见图9-8,K和G分别为阴极和控制极,A为阳极加共轴限制膜片,螺线管提供匀强磁场。
b、原理:由于控制极和共轴膜片的存在,电子进磁场的发散角极小,即速度和磁场的夹角θ极小,各粒子做螺旋运动时可以认为螺距彼此相等(半径可以不等),故所有粒子会“聚焦”在荧光屏上的P点。
4、回旋加速器
a、结构&原理(注意加速时间应忽略)
b、磁场与交变电场频率的关系
因回旋周期T和交变电场周期T′必相等,故
=![]()
c、最大速度 vmax =
= 2πRf
5、质谱仪
速度选择器&粒子圆周运动,和高考要求相同。
第二讲 典型例题解析
一、磁场与安培力的计算
【例题1】两根无限长的平行直导线a、b相距40cm,通过电流的大小都是3.0A,方向相反。试求位于两根导线之间且在两导线所在平面内的、与a导线相距10cm的P点的磁感强度。
【解说】这是一个关于毕萨定律的简单应用。解题过程从略。
【答案】大小为8.0×10?6T ,方向在图9-9中垂直纸面向外。
【例题2】半径为R ,通有电流I的圆形线圈,放在磁感强度大小为B 、方向垂直线圈平面的匀强磁场中,求由于安培力而引起的线圈内张力。
【解说】本题有两种解法。
方法一:隔离一小段弧,对应圆心角θ ,则弧长L = θR 。因为θ →
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com