C. 提示:; 查看更多

 

题目列表(包括答案和解析)

(提示:1、12、13、14班同学请完成试题(B),其他班级同学任选试题(A)或(B)作答)
(A) 已知点A(2,3),B(5,4),C(7,10)及
AP
=
AB
+t
AC
,试问:
(1)t为何值时,P在第三象限?
(2)是否存在D点使得四边形ABCD为平行四边形,若存在,求出D点坐标.
(B) 已知平行四边形ABCD,对角线AC与BD交于点E,
AN
=
1
2
ND
,连接BN交AC于M,
(1)若
AM
AE
,求实数λ.
(2)若B(0,0),C(1,0),D(2,1),求M的坐标.

查看答案和解析>>

(提示:1、12、13、14班同学请完成试题(B),其他班级同学任选试题(A)或(B)作答)
(A) 已知点A(2,3),B(5,4),C(7,10)及数学公式,试问:
(1)t为何值时,P在第三象限?
(2)是否存在D点使得四边形ABCD为平行四边形,若存在,求出D点坐标.
(B) 已知平行四边形ABCD,对角线AC与BD交于点E,数学公式,连接BN交AC于M,
(1)若数学公式,求实数λ.
(2)若B(0,0),C(1,0),D(2,1),求M的坐标.

查看答案和解析>>

为提高学生学习数学的兴趣,某地区举办了小学生“数独比赛”.比赛成绩共有90分,70分,60分,40分,30分五种,按本次比赛成绩共分五个等级.从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按这五个等级进行了统计,得到如下数据表:
成绩等级 A B C D E
成绩(分) 90 70 60 40 30
人数(名) 4 6 10 7 3
(Ⅰ)根据上面的统计数据,试估计从本地区参加“数独比赛”的小学生中任意抽取一人,其成绩等级为“A 或B”的概率;
(Ⅱ)根据(Ⅰ)的结论,若从该地区参加“数独比赛”的小学生(参赛人数很多)中任选3人,记X表示抽到成绩等级为“A或B”的学生人数,求X的分布列及其数学期望EX;
(Ⅲ)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于20分”的概率.

查看答案和解析>>

如图:(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.
给出下说法:
①图(2)的建议是:提高成本,并提高票价;   ②图(2)的建议是:降低成本,并保持票价不变;
③图(3)的建议是:提高票价,并保持成本不变;④图(3)的建议是:提高票价,并降低成本.
其中所有说法正确的序号是( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>

如图:(1)是反映某条公共汽车线路收支差额(即营运所得票价收入与付出成本的差)y与乘客量x之间关系的图象.由于目前该条公交线路亏损,公司有关人员提出了两种调整的建议,如图(2)(3)所示.
给出下说法:
①图(2)的建议是:提高成本,并提高票价;   ②图(2)的建议是:降低成本,并保持票价不变;
③图(3)的建议是:提高票价,并保持成本不变;④图(3)的建议是:提高票价,并降低成本.
其中所有说法正确的序号是( )
A.①③
B.①④
C.②③
D.②④

查看答案和解析>>


同步练习册答案