问题1:已知函数.写出求对应的函数值的一个算法.并画出流程图 S1输入 S2计算 S3若.则, 否则 查看更多

 

题目列表(包括答案和解析)

解答题:解答时应写出文字说明、证明过程或演算步骤

已知定义在(-1,1)上的函数f(x)满足,且对x,y∈(-1,1)时,有

(1)

判断f(x)在(-1,1)上的奇偶性,并加以证明;

(2)

,求数列{f(x)}的通项公式;

(3)

设Tn为数列{}的前n项和,问是否存在正整数m,使得对任意的n∈N*,有成立?若存在,求出m的最小值,若不存在,则说明理由.

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

已知函数(x∈R)在区间[-1,1]上是增函数

(1)

求实数a的值所组成的集合A

(2)

设关于x的方程的两实数根为x1、x2,试问:是否存在实数m,使得不等式对任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由?

查看答案和解析>>

已知幂函数满足

(1)求实数k的值,并写出相应的函数的解析式;

(2)对于(1)中的函数,试判断是否存在正数m,使函数,在区间上的最大值为5。若存在,求出m的值;若不存在,请说明理由。

【解析】本试题主要考查了函数的解析式的求解和函数的最值的运用。第一问中利用,幂函数满足,得到

因为,所以k=0,或k=1,故解析式为

(2)由(1)知,,因此抛物线开口向下,对称轴方程为:,结合二次函数的对称轴,和开口求解最大值为5.,得到

(1)对于幂函数满足

因此,解得,………………3分

因为,所以k=0,或k=1,当k=0时,

当k=1时,,综上所述,k的值为0或1,。………………6分

(2)函数,………………7分

由此要求,因此抛物线开口向下,对称轴方程为:

时,,因为在区间上的最大值为5,

所以,或…………………………………………10分

解得满足题意

 

查看答案和解析>>

解答题:解答应写出文字说明,证明过程或演算步骤.

已知定义在(—1,1)上的函数满足,且对时,有

(1)

判断在(—1,1)上的奇偶性,并加以证明;

(2)

,求数列{}的通项公式;

(3)

为数列{}的前项和,问是否存在正整数,使得对任意的,有成立?若存在,求出的最小值,若不存在,则说明理由.(注意:文科考生只做(1)(2),理科考生全做)

查看答案和解析>>

水是生命之源、生产之要、生态之基.2010年春季,西南5省面临世纪大旱,5000多万同胞受灾.这场少见的世纪大旱使农作物受灾面积近500万公顷,其中40万公顷良田颗粒无收,2000万同胞面临无水可饮的绝境.某乡镇对此次旱灾进行了认真的分析、总结,决定建造一个容积为4800m3,深为3m的长方体形无盖贮水池,以解决当地居民饮水、灌溉问题.已知贮水池池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底一边长为xm,总造价为y(单位:元).
(1)试写出以x为自变量的函数y的解析式;
(2)求函数y的最小值,及相应x的值,并指出其实际意义.

查看答案和解析>>


同步练习册答案