2.探索并掌握等差数列的通项公式与前n项和的公式, 查看更多

 

题目列表(包括答案和解析)

类比是一个伟大的引路人.我们知道,等差数列和等比数列有许多相似的性质,请阅读下表并根据等差数列的结论,类似的得出等比数列的两个结论:
bn=
 
,dn=
 

等差数列{an} 等比数列{bn}
an=a1+(n-1)d bn=b1qn-1
an=am+(n-m)d bn
 
若cn=
a1+a2a3+∧+an
n

则数列{cn}为等差数列
若dn=
 

则数列{dn}为等比数列

查看答案和解析>>

类比是一个伟大的引路人.我们知道,等差数列和等比数列有许多相似的性质,请阅读下表并根据等差数列的结论,类似的得出等比数列的两个结论:
bn=______,dn=______
等差数列{an} 等比数列{bn}
an=a1+(n-1)d bn=b1qn-1
an=am+(n-m)d bn______
若cn=
a1+a2a3+∧+an
n

则数列{cn}为等差数列
若dn=______,
则数列{dn}为等比数列

查看答案和解析>>

已知等差数列{an}的首项为4,公差为4,其前n项和为Sn,则数列 {}的前n项和为(  )

 

A.

B.

C.

D.

考点:

数列的求和;等差数列的性质.

专题:

等差数列与等比数列.

分析:

利用等差数列的前n项和即可得出Sn,再利用“裂项求和”即可得出数列 {}的前n项和.

解答:

解:∵Sn=4n+=2n2+2n,

∴数列 {}的前n项和===

故选A.

点评:

熟练掌握等差数列的前n项和公式、“裂项求和”是解题的关键.

查看答案和解析>>

类比是一个伟大的引路人.我们知道,等差数列和等比数列有许多相似的性质,请阅读下表并根据等差数列的结论,类似的得出等比数列的两个结论:
bn=    ,dn=   
等差数列{an}等比数列{bn}
an=a1+(n-1)dbn=b1qn-1
an=am+(n-m)dbn   
若cn=
则数列{cn}为等差数列
若dn=   
则数列{dn}为等比数列

查看答案和解析>>

类比是一个伟大的引路人.我们知道,等差数列和等比数列有许多相似的性质,请阅读下表并根据等差数列的结论,类似的得出等比数列的两个结论:
bn=    ,dn=   
等差数列{an}等比数列{bn}
an=a1+(n-1)dbn=b1qn-1
an=am+(n-m)dbn   
若cn=
则数列{cn}为等差数列
若dn=   
则数列{dn}为等比数列

查看答案和解析>>


同步练习册答案