(2010?连云港二模)如图,两根足够长的光滑固定平行金属导轨与水平面成θ角,导轨间距为d,两导体棒a和b与导轨垂直放置,两根导体棒的质量都为m、电阻都为R,回路中其余电阻不计.整个装置处于垂直于导轨平面向上的匀强磁场中,磁感应强度的大小为B.在t=0时刻使a沿导轨向上作速度为v的匀速运动,同时将b由静止释放,b经过一段时间后也作匀速运动.已知d=1m,m=0.5kg,R=0.5Ω,B=0.5T,θ=30°,g取10m/s
2,不计两导棒间的相互作用力.
(1)为使导体棒b能沿导轨向下运动,a的速度v不能超过多大?
(2)若a在平行于导轨向上的力F作用下,以v
1=2m/s的速度沿导轨向上运动,试导出F与b的速率v
2的函数关系式并求出v
2的最大值;
(3)在(2)中,当t=2s时,b的速度达到5.06m/s,2s内回路中产生的焦耳热为13.2J,求该2s内力F做的功(结果保留三位有效数字).