题目列表(包括答案和解析)
若
·
+
<0,则△ABC必定是( )
(A)锐角三角形 (B)钝角三角形
(C)直角三角形 (D)等腰直角三角形
如果一个实数数列
满足条件:
(
为常数,
),则称这一数列
“伪等差数列”,
称为“伪公差”。给出下列关于某个伪等差数列
的结论:
①对于任意的首项
,若
<0,则这一数列必为有穷数列;
②当
>0,
>0时,这一数列必为单调递增数列;
③这一数列可以是一个周期数列;
④若这一数列的首项为1,伪公差为3,
可以是这一数列中的一项;
⑤若这一数列的首项为0,第三项为-1,则这一数列的伪公差可以是
。
其中正确的结论是________________.
若二次函数f(x)=ax2+bx+c(a≠0)的图象和直线y=x无交点,现有下列结论:①方程f(f(x))=x一定没有实数根;
②若a>0,则不等式f(f(x))>x对一切实数x都成立;
③若a<0,则必存在实数x0,使f(f(x0))>x0;
④若a+b+c=0,则不等式f(f(x))<x对一切实数都成立;
⑤函数g(x)=ax2-bx+c的图象与直线y=-x也一定没有交点.
其中正确的结论是 (写出所有正确结论的编号).
若
<
<0, 则(1)a+ b < a b, (2)|a|>|b|, (3)a<b, (4)
中正确的有![]()
___________.
16.(2)解(1)当a=1,b=-2时,g(x)=f(x)-2,把f(x)图象向下平移两个单位就可得到g(x)图象,
这时函数g(x)只有两个零点,所以(1)不对
(2)若a=-1,-2<b<0,则把函数f(x)作关于x轴对称图象,然后向下平移不超过2个单位就可得到g(x)图象,这时g(x)有超过2的零点
(3)当a<0时, y=af(x)根据定义可断定是奇函数,如果b≠0,把奇函数y=af(x)图象再向上(或向下)平移后才是y=g(x)=af(x)+b的图象,那么肯定不会再关于原点对称了,肯定不是奇函数;当b=0时才是奇函数,所以(3)不对。所以正确的只有(2)
一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半,现在从该盒中随机取出一球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数Y的分布列.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com