解:(1)∵点是线段的中点 ∴是△的中位线 又∴ ----------------------------2分 ∴ ---------------------------7分 ∴椭圆的标准方程为=1 ----------8分 (2)∵点C在椭圆上.A.B是椭圆的两个焦点 ∴AC+BC=2a=.AB=2c=2 -------------------------10分 在△ABC中.由正弦定理. -----------12分 ∴= ------------------14分 查看更多

 

题目列表(包括答案和解析)

如图1,在中,,D,E分别为AC,AB的中点,点F为线段CD上的一点,将沿DE折起到的位置,使,如图2.

(Ⅰ)求证:DE∥平面

(Ⅱ)求证:

(Ⅲ)线段上是否存在点Q,使?说明理由。

【解析】(1)∵DE∥BC,由线面平行的判定定理得出

(2)可以先证,得出,∵

(3)Q为的中点,由上问,易知,取中点P,连接DP和QP,不难证出,又∵

 

查看答案和解析>>

如图1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分别是AC,AB上的点,且DE∥BC,DE=2,将△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如图2.

(1)   求证:A1C⊥平面BCDE;

(2)   若M是A1D的中点,求CM与平面A1BE所成角的大小;

(3)   线段BC上是否存在点P,使平面A1DP与平面A1BE垂直?说明理由

【解析】(1)∵DE∥BC∴又∵

(2)如图,以C为坐标原点,建立空间直角坐标系C-xyz,

设平面的法向量为,则,又,所以,令,则,所以

设CM与平面所成角为。因为

所以

所以CM与平面所成角为

 

查看答案和解析>>

 【选做题】本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.

A.选修4-1:几何证明选讲

 

如图,是⊙O的直径,弦的延长线相交于点E,EF垂直BA的延长线于点F.求证:

(1)

(2)

 

 

 

 

 

B.选修4-2:矩阵与变换

 

求曲线在矩阵MN对应的变换作用下得到的曲线方程,其中

 

C.选修4-4:坐标系与参数方程

 

以直角坐标系的原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度.已知直线l的极坐标方程为,曲线C的参数方程为,又直线l与曲线C交于A,B两点,求线段AB的长.

 

D.选修4-5:不等式选讲

 

若存在实数使成立,求常数的取值范围.

 

 

查看答案和解析>>


同步练习册答案