若以连续抛掷两次骰子分别得到的点数m.n作为点P的坐标.则点P落在圆 内的概率为( )B A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

(2009•惠州模拟)已知向量
a
=(1,n),
b
=(-1,n-2),若
a
b
共线.则n等于(  )

查看答案和解析>>

(2009•天门模拟)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点.沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF(如图).
(Ⅰ)当x=2时,求证:BD⊥EG;
(Ⅱ)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值.

查看答案和解析>>

(2009•大连二模)一个均匀的正方体骰子连续掷两次,若以先后得到的点数m,n为点P(m,n),则点P在圆x2+y2=20外部的概率为(  )

查看答案和解析>>

(2009•宝山区一模)已知数列{an}的前n项和为Sn,a1=1,3an+1+4Sn=3(n为正整数).
(1)求数列{an}的通项公式;
(2)记S=a1+a2+…+an+…,若对任意正整数n,kS<Sn恒成立,求k的取值范围?
(3)已知集合A={x|x2+a≤(a+1)x,a>0},若以a为首项,a为公比的等比数列前n项和记为Tn,问是否存在实数a使得对于任意的n∈N*,均有Tn∈A.若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

(2009•河北区二模)已知如图(1),梯形ABCD中,AD∥BC,∠ABC=∠BAD=
π2
,AB=BC=2AD=4,E、F分别是AB、CD上的动点,且EF∥BC,设AE=x(0<x<4).沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF,如图(2).
(Ⅰ)求证:平面ABE⊥平面ABCD;
(Ⅱ)若以B、C、D、F为顶点的三棱锥的体积记为f(x),求f(x)的最大值;
(Ⅲ)当f(x)取得最大值时,求异面直线CD和BE所成角的余弦值.

查看答案和解析>>


同步练习册答案