解:原式= -----------2分 = ----------------3分 =. ----------------------4分 当.时. 原式=. -------------------6分 查看更多

 

题目列表(包括答案和解析)

(1)阅读下面材料:点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b|当A、B两点都不在原点时,

①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;

②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;

③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.

(2)回答下列问题:

①数轴上表示2和5的两点之间的距离是________,数轴上表示-2和-5的两点之间的距离是________,

数轴上表示1和-3的两点之间的距离是________;

②数轴上表示x和-1的两点A和B之间的距离是________,如果|AB|=3,那么x________;

③当代数式|x+2|十|x-5|取最小值时,相应的x的取值范围是________

④解方程∣x+2∣+∣x-5∣=9

查看答案和解析>>

阅读与证明:

如图,已知正方形ABCD中,E、F分别是CD、BC上的点,且∠EAF=45°,求证:BF+DE=EF.

分析:证明一条线段等于另两条线段的和,常用“截长法”或“补短法”,将线段BF、DE放在同一直线上,构造出一条与BF+DE相等的线段.如图延长ED至点,使D=BF,连接A,易证△ABF≌△AD,进一步证明△AEF≌△AE,即可得结论.

(1)请你将下面的证明过程补充完整.

证明:延长ED至,使D=BF,

∵四边形ABCD是正方形

∴AB=AD,∠ABF=∠AD=90°,

∴△ABF≌△AD(SAS)

应用与拓展:如图建立平面直角坐标系,使顶点A与坐标原点O重合,边OB、OD分别在x轴、y轴的正半轴上.

(2)设正方形边长OB为30,当E为CD中点时,试问F为BC的几等分点?并求此时F点的坐标;

(3)设正方形边长OB为30,当EF最短时,直接写出直线EF的解析式:________

查看答案和解析>>

一元二次方程的解法

①直接开平方法:对于一元二次方程x2aa0),因为xa的平方根,所以x___________,即x1___________x2___________,这种解一元二次方程的方法叫做直接开平方法.

②配方法:将一元二次方程ax2bxc0a0)配成___________的形式后,当b24ac___________时,用直接开平方法求出它的根,这种解一元二次方程的方法叫做配方法.

③公式法:应用一元二次方程ax2bxc0a0)的求根公式x___________(b24ac0),这种解一元二次方程的方法叫做公式法.

④因式分解法:若一元二次方程ax2bxc0(a≠0)的左边是关于x的二次三项式易于分解成两个关于x的一次因式乘积的形式时,则方程ax2bxc=0可变形为___________,分别令两个一次因式等于0,得两个关于x的一次方程___________和___________,通过解这两个一次方程,就可得原方程的解.这种解一元二次方程的方法叫做因式分解法.

 

查看答案和解析>>

为解方程(x21)25(x21)40,我们可以将x21视为一个整体,然后设x21y,则y2(x21)2,原方程化为y25y40,解此方程,得y11y24

y1时,x211x22,∴x=±

y4时,x214x25,∴x=±

∴原方程的解为x1=–x2x3=–x4

以上方法就叫换元法,达到了降次的目的,体现了转化的思想.

1)运用上述方法解方程:x43x240

2)既然可以将x21看作一个整体,你能直接运用因式分解法解这个方程吗?

 

查看答案和解析>>

阅读下列材料并解决有关问题:

化简含有绝对值的代数式的一种方法

我们知道|x|=现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x-2|时,可令x+1=0和x-2=0,分别求得x=-1,x=2(称-1,2分别为|x+1|与|x-2|的零点值).在实数范围内,零点值x=-1和x=2可将全体实数分成不重复且不遗漏的如下3种情况:

  (1)x<-1;(2)-1≤x<2;(3)x≥2.

  从而化简代数式|x+1|+|x-2|可分以下3种情况:

  (1)当x<-1时,原式=-(x+1)-(x-2)=-2x+1;

  (2)当-1≤x<2时,原式=x+1-(x-2)=3;

  (3)当x≥2时,原式=x+1+x-2=2x-1.

  综上讨论,原式=

通过以上阅读,请你解决以下问题:

(1)分别求出|x+2|和|x-4|的零点值;

(2)化简代数式|x+2|+|x-4|.

查看答案和解析>>


同步练习册答案