目标1 知道什么是函数.并能判断某变化过程中两个变量之间的的关系是否函数关系 已知梯形上底的长为x.下底的长是10.高是6.梯形的面积y随上底x的变化而变化. (1)梯形的面积y与上底的长x之间的关系是否是函数关系?为什么? (2)若y是x的函数.试写出y与x之间的函数关系式. 目标2 知道什么是一次函数.正比例函数.并能判断一个函数是不是一次函数和正比例函数1.函数:①y=-x x;②y=-1;③y=;④y=x2+3x-1;⑤y=x+4;⑥y=3. 6x, 一次函数有 ;正比例函数有 . *2.函数y=(k2-1)x+3是一次函数,则k的取值范围是( )A.k≠1 B.k≠-1 C.k≠±1 D.k为任意实数. *3.若一次函数y=x+2k-1是正比例函数,则k= . 目标3 会运用一次函数图像及性质解决简单的问题 查看更多

 

题目列表(包括答案和解析)

8、小明做作业时,不小心把一滴墨水滴在一道数学题上,题目变成了:,看不清x前面的数字是什么,只知道这是一个完全平方式,请你判断这个被墨水遮住的数字可能是(  )

查看答案和解析>>

31、追求真理是人类永恒的目标. 数学不仅要回答“什么是数学真理”,还必须回答“为什么”它是数学真理. 为了证明数学真理,就需要证明,证明就是用人人皆同意的一些“公理”与规定名词的意义,把我们以前仅凭直观或实验探索发现过的结论成为公理的逻辑推论,这样就有很强的说服力. 请你在以下2个命题中任选一个加以逻辑证明,并在你选证的命题前面括号内打“∨”.
(∨)命题1:一组对边平行且相等的四边形是平行四边形;
(  )命题2:梯形的中位线平行于两底且等于两底和的一半.

查看答案和解析>>

某同学做作业时,不慎将墨水滴在了数学题上,如“x2•x+9”,看不清x前面是什么数字,只知道它是一个关于x的完全平方式,那么被墨水遮住的数字是 _________ 

查看答案和解析>>

某同学做作业时,不慎将墨水滴在了数学题上,如“x2?x+9”,看不清x前面是什么数字,只知道它是一个关于x的完全平方式,那么被墨水遮住的数字是 _________ 

 

查看答案和解析>>

  四个连续自然数的积再加上1一定是一个完全平方数.完全平方数是这样一种数:它可以写成一个正整数的平方.例如:16是4的平方,81是9的平方.

我们看下面的例子:

  1·2·3·4+1=25(=52);2·3·4·5+1=121(=112);

  3·4·5·6+1=361(=192);

  如果我们设四个连续自然数中最小的一个是n,那么这四个连续自然数的积加上1的和可以表示为n(n+1)(n+2)(n+3)+1,它的结果是n2+3n+1的平方,因为n为自然数,所以n2+3n+1也是一个自然数,即:

  n(n+1)(n+2)(n+3)+1=(n2+3n+1)2.①

  学到整式的乘法时,我们还可以证明这个等式成立.

  当n取任意自然数代入①,不仅可以知道n(n+l)(n+2)(n+3)+1是一个完全平方数,还可以知道它是什么数的平方.

  你可以算一算:20·21·22·23+1=?,50·51·52·53+1=?

  同学们,根据同样的道理,四个连续偶数(或奇数)的积再加上16是一个完全平方数吗?请你试一试.

查看答案和解析>>


同步练习册答案