题目列表(包括答案和解析)
(本小题满分10分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和
外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成
本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)
满足两个关系:①C(x)=②若不建隔热层,每年能源消耗费用为8万
元。设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求k的值及f(x)的表达式; (4分)
(Ⅱ)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.
(本小题满分10分)(注意:在试题卷上作答无效)
的三个内角A,B,C所对的边分别为a,b,c, 向量
且
(Ⅰ)求的大小;
(Ⅱ)现给出下列四个条件:①②③④.试从中再选择两个条件以确定,求出你所确定的的面积.
(本小题满分10分) 定义域为的奇函数满足,且当时,.
(1)求在上的解析式;
(2)当取何值时,方程在上有解?
(本小题10分)
设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E.
(1)求轨迹E的方程,并说明该方程所表示曲线的形状;
(2)点为当时轨迹E上的任意一点,定点的坐标为(3,0),
点满足,试求点的轨迹方程。
在棱长为的正方体中,是线段的中点,.
(1) 求证:^;
(2) 求证://平面;
(3) 求三棱锥的表面积.
【解析】本试题考查了线线垂直和线面平行的判定定理和表面积公式的运用。第一问中,利用,得到结论,第二问中,先判定为平行四边形,然后,可知结论成立。
第三问中,是边长为的正三角形,其面积为,
因为平面,所以,
所以是直角三角形,其面积为,
同理的面积为, 面积为. 所以三棱锥的表面积为.
解: (1)证明:根据正方体的性质,
因为,
所以,又,所以,,
所以^. ………………4分
(2)证明:连接,因为,
所以为平行四边形,因此,
由于是线段的中点,所以, …………6分
因为面,平面,所以∥平面. ……………8分
(3)是边长为的正三角形,其面积为,
因为平面,所以,
所以是直角三角形,其面积为,
同理的面积为, ……………………10分
面积为. 所以三棱锥的表面积为
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com