割补法 例1.如图示.平行于纸面向右的匀强磁场.磁感应强度B1= 1T.位于纸面内的细直导线.长L=1m.通有I=1A的恒定电流.当导线与B1成600 夹角时,发现其受到的安培力为零,则该区域同时存在的另一个匀强磁场的磁感应强度B2大小可能值为 A. T/2 B. C. 1T D. 解: 合磁场方向与电流平行则受力为0. 由平行四边形法则, B2大小只要 不小于 T的所有值都可以 例2.质量相等的A.B两物体放在同一水平面上.分别受到水平拉力F1和F2的作用做匀加速直线运动.在t0和4t0时速度达到2v0和v0时.撤去F1和F2后.继续做匀减速运动直到停止.其速度随时间变化情况如图所示.若F1.F2做的功分别为W1和W2.F1.F2的冲量分别为I1和I2 , 则有 A.W1>W2.I1>I2 B.W1>W2.I1<I2 C.W1<W2.I1>I2 D.W1<W2.I1<I2 解:由图可知,摩擦力f相同,对全过程, 由动能定理 W - fS=0 W= Fs S1 > S2 W1>W2 由动量定理 I - ft=0 I= ft t1 < t2 I1<I2 例3.在足够大的真空空间中.存在水平向右方向的匀强电场.若用绝缘细线将质量为m的带正电小球悬挂在电场中.静止时细线与竖直方向夹角θ=37°.现将该小球从电场中的某点竖直向上抛出.抛出的初速度大小为v0.如图所示.求: ⑴小球在电场内运动过程中最小速率. ⑵小球从抛出至达到最小速率的过程中.电场力对小球的功. (sin37°=0.6.cos=37°=0.8) 解:小球悬挂在电场中.静止时细线与 竖直方向夹角θ=37° qE=mgtgθ=3mg/4 解: 小球在电场内受力如图示,小球做斜抛运动 , 将初速度沿如图示坐标轴分解:当运动到B点时,合力做的负功最多,速度最小,设为vB 由运动的分解得vB = v0 sinθ=0.6v0 所以,运动过程中最小速率为0.6v0 ⑵要求电场力对小球的功,将运动按水平和竖直方向分解如图示: 电场力做的功等于水平方向动能的增加 W电=1/2mvBX2 =1/2× m×(3 v0 /5 ×cosθ)2 = 72mv02/625 例4.在光滑的水平面上,有一竖直向下的匀强磁场.分布在宽度为L 的区域内, 现有一边长为d (d<L =的正方形闭合线框以垂直于磁场边界的初速度v0滑过磁场.则线框在滑进磁场时的速度是多少? 解:设线框即将进入磁场时的速度为v0,全部进入磁场时的速度为vt 将线框进入的过程分成很多小段,每一段的运动可以看成是 速度为vi 的匀速运动, 对每一小段.由动量定理: f1Δt=B2 L2 v0Δt /R = mv0 – mv1 (1) f2Δt=B2 L2 v1Δt /R = mv1 – mv2 (2) f3Δt=B2 L2 v2Δt /R = mv2 – mv3 (3) f4Δt=B2 L2 v3Δt /R = mv3 – mv4 (4) -- -- fnΔt=B2 L2 vn-1Δt /R = mvn-1 – mvt (n) v0Δt+ v1Δt + v2Δt + v3Δt +--+ vn-1Δt + vnΔt =d 将各式相加.得B2 L2 d /R = mv0 – mvt 练习 05年苏锡常镇二模9. 1:如图所示.光滑绝缘.互相垂直的固定墙壁PO.OQ竖立在光滑水平绝缘地面上.地面上方有一平行地面的匀强电场E.场强方向水平向左且垂直于墙壁PO.质量相同且带同种正电荷的A.B两小球放置在光滑水平绝缘地面上.当A球在平行于墙壁PO的水平推力F作用下.A.B两小球均紧靠墙壁而处于静止状态.这时两球之间的距离为L.若使小球A在水平推力F的作用下沿墙壁PO向着O点移动一小段距离后.小球A与B重新处于静止状态.则与原来比较(两小球所带电量保持不变) A. A球对B球作用的静电力增大 B. A球对B球作用的静电力减小 C. 墙壁PO对A球的弹力不变 D. 两球之间的距离减小.力F增大 04年天津市质量检测. 2:如图示.斜劈形物体的质量为M.放在水平地面上.质量为m 的粗糙物块以某一初速沿劈的斜面向上滑.至速度为零后又返回.而M始终保持静止.m 上.下滑动的整个过程中.正确的有 A. 地面对 M的摩擦力方向先向左后向右 B. 地面对 M的摩擦力方向没有改变 C. 地面对 M的支持力总小于(M+m)g D. m上.下滑动时的加速度大小相同 查看更多

 

题目列表(包括答案和解析)

(1)在“探究力的平行四边形定则”的实验中,用图钉把橡皮条的一端固定在板上的A点,在橡皮条的另一端拴上两条细绳,细绳另一端系着绳套B、C(用来连接弹簧测力计).其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳.
①某同学的实验处理结果如图1,与橡皮条共线的力一定是
F′
F′
.(选填“F”或“F′”)
②本实验采用的科学方法是
C
C

A.理想实验法 B.控制变量法 C.等效替代法 D.建立物理模型法
(2)某型号电吹风的内部电路图及铭牌如图2所示,图中M为电动机,R为电热丝.该电吹风有“热风”和“冷风”两种功能,可通过开关S1和S2的通断来切换,则正常使用该电吹风的热风功能时电热丝的电阻为
55
55
Ω.
小明从一个废弃的该型号电吹风中拆下电热丝,想用伏安法测量该电热丝在常温下的电阻,手边有如下器材:
A.电源E(电动势4.5V,内阻0.5Ω)
B.电压表V(0~3~15V,内阻大于3kΩ)
C.电流表A(0~15~150mA,内阻小于1Ω)
D.滑动变阻器R1(0~15Ω,2.0A)
E.滑动变阻器R2(0~2kΩ,0.3A)
F.开关S和导线若干
(1)滑动变阻器应该选择
R1
R1
(选填“R1”或“R2”),连接电路时,电压表的量程应该选择
0~3
0~3
V,电流表的量程应该选择
0~150
0~150
mA.
(2)请在图3的虚线框中补全实验电路图.
(3)若一次实验中,两表的指针分别如图4所示,则电压表的读数为
1.8
1.8
V,该电热丝在常温下的电阻为
15
15
Ω.(结果均保留三位有效数字)
4量结果与正常工作时的阻值有较大差异主要是因为
C
C

A.伏安法测电阻时电压表内阻带来的系统误差
B.伏安法测电阻时电流表内阻带来的系统误差
C.测量时电阻温度与正常工作时电阻温度差异较大
D.电压表和电流表读数的偶然误差.

查看答案和解析>>

如图所示,一束单无双光沿折射率为n的半圆柱形玻璃砖的半径垂直ab面入射,有光线从ab面射出.以O点为圆心,将玻璃砖缓慢转过θ角时,恰好没有光线从ab面射出.则θ为(反三角函数表示法:例,sinθ=A,则θ=sin-1 A)(  )

查看答案和解析>>

第三部分 运动学

第一讲 基本知识介绍

一. 基本概念

1.  质点

2.  参照物

3.  参照系——固连于参照物上的坐标系(解题时要记住所选的是参照系,而不仅是一个点)

4.绝对运动,相对运动,牵连运动:v=v+v 

二.运动的描述

1.位置:r=r(t) 

2.位移:Δr=r(t+Δt)-r(t)

3.速度:v=limΔt→0Δr/Δt.在大学教材中表述为:v=dr/dt, 表示r对t 求导数

5.以上是运动学中的基本物理量,也就是位移、位移的一阶导数、位移的二阶导数。可是

三阶导数为什么不是呢?因为牛顿第二定律是F=ma,即直接和加速度相联系。(a对t的导数叫“急动度”。)

6.由于以上三个量均为矢量,所以在运算中用分量表示一般比较好

三.等加速运动

v(t)=v0+at           r(t)=r0+v0t+1/2 at

 一道经典的物理问题:二次世界大战中物理学家曾经研究,当大炮的位置固定,以同一速度v0沿各种角度发射,问:当飞机在哪一区域飞行之外时,不会有危险?(注:结论是这一区域为一抛物线,此抛物线是所有炮弹抛物线的包络线。此抛物线为在大炮上方h=v2/2g处,以v0平抛物体的轨迹。) 

练习题:

一盏灯挂在离地板高l2,天花板下面l1处。灯泡爆裂,所有碎片以同样大小的速度v 朝各个方向飞去。求碎片落到地板上的半径(认为碎片和天花板的碰撞是完全弹性的,即切向速度不变,法向速度反向;碎片和地板的碰撞是完全非弹性的,即碰后静止。)

四.刚体的平动和定轴转动

1. 我们讲过的圆周运动是平动而不是转动 

  2.  角位移φ=φ(t), 角速度ω=dφ/dt , 角加速度ε=dω/dt

 3.  有限的角位移是标量,而极小的角位移是矢量

4.  同一刚体上两点的相对速度和相对加速度 

两点的相对距离不变,相对运动轨迹为圆弧,VA=VB+VAB,在AB连线上

投影:[VA]AB=[VB]AB,aA=aB+aAB,aAB=,anAB+,aτAB, ,aτAB垂直于AB,,anAB=VAB2/AB 

例:A,B,C三质点速度分别V,VB  ,VC      

求G的速度。

五.课后习题:

一只木筏离开河岸,初速度为V,方向垂直于岸边,航行路线如图。经过时间T木筏划到路线上标有符号处。河水速度恒定U用作图法找到在2T,3T,4T时刻木筏在航线上的确切位置。

五、处理问题的一般方法

(1)用微元法求解相关速度问题

例1:如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D,BC段水平,当以恒定水平速度v拉绳上的自由端时,A沿水平面前进,求当跨过B的两段绳子的夹角为α时,A的运动速度。

(vA

(2)抛体运动问题的一般处理方法

  1. 平抛运动
  2. 斜抛运动
  3. 常见的处理方法

(1)将斜上抛运动分解为水平方向的匀速直线运动和竖直方向的竖直上抛运动

(2)将沿斜面和垂直于斜面方向作为x、y轴,分别分解初速度和加速度后用运动学公式解题

(3)将斜抛运动分解为沿初速度方向的斜向上的匀速直线运动和自由落体运动两个分运动,用矢量合成法则求解

例2:在掷铅球时,铅球出手时距地面的高度为h,若出手时的速度为V0,求以何角度掷球时,水平射程最远?最远射程为多少?

(α=、 x=

第二讲 运动的合成与分解、相对运动

(一)知识点点拨

  1. 力的独立性原理:各分力作用互不影响,单独起作用。
  2. 运动的独立性原理:分运动之间互不影响,彼此之间满足自己的运动规律
  3. 力的合成分解:遵循平行四边形定则,方法有正交分解,解直角三角形等
  4. 运动的合成分解:矢量合成分解的规律方法适用
    1. 位移的合成分解 B.速度的合成分解 C.加速度的合成分解

参考系的转换:动参考系,静参考系

相对运动:动点相对于动参考系的运动

绝对运动:动点相对于静参考系统(通常指固定于地面的参考系)的运动

牵连运动:动参考系相对于静参考系的运动

(5)位移合成定理:SA对地=SAB+SB对地

速度合成定理:V绝对=V相对+V牵连

加速度合成定理:a绝对=a相对+a牵连

(二)典型例题

(1)火车在雨中以30m/s的速度向南行驶,雨滴被风吹向南方,在地球上静止的观察者测得雨滴的径迹与竖直方向成21角,而坐在火车里乘客看到雨滴的径迹恰好竖直方向。求解雨滴相对于地的运动。

提示:矢量关系入图

答案:83.7m/s

(2)某人手拿一只停表,上了一次固定楼梯,又以不同方式上了两趟自动扶梯,为什么他可以根据测得的数据来计算自动扶梯的台阶数?

提示:V人对梯=n1/t1

      V梯对地=n/t2

      V人对地=n/t3

V人对地= V人对梯+ V梯对地

答案:n=t2t3n1/(t2-t3)t1

(3)某人驾船从河岸A处出发横渡,如果使船头保持跟河岸垂直的方向航行,则经10min后到达正对岸下游120m的C处,如果他使船逆向上游,保持跟河岸成а角的方向航行,则经过12.5min恰好到达正对岸的B处,求河的宽度。

提示:120=V水*600

        D=V船*600

 答案:200m

(4)一船在河的正中航行,河宽l=100m,流速u=5m/s,并在距船s=150m的下游形成瀑布,为了使小船靠岸时,不至于被冲进瀑布中,船对水的最小速度为多少?

提示:如图船航行

答案:1.58m/s

(三)同步练习

1.一辆汽车的正面玻璃一次安装成与水平方向倾斜角为β1=30°,另一次安装成倾角为β2=15°。问汽车两次速度之比为多少时,司机都是看见冰雹都是以竖直方向从车的正面玻璃上弹开?(冰雹相对地面是竖直下落的)

2、模型飞机以相对空气v=39km/h的速度绕一个边长2km的等边三角形飞行,设风速u = 21km/h ,方向与三角形的一边平行并与飞机起飞方向相同,试求:飞机绕三角形一周需多少时间?

3.图为从两列蒸汽机车上冒出的两股长幅气雾拖尾的照片(俯视)。两列车沿直轨道分别以速度v1=50km/h和v2=70km/h行驶,行驶方向如箭头所示,求风速。

4、细杆AB长L ,两端分别约束在x 、 y轴上运动,(1)试求杆上与A点相距aL(0< a <1)的P点运动轨迹;(2)如果vA为已知,试求P点的x 、 y向分速度vPx和vPy对杆方位角θ的函数。

(四)同步练习提示与答案

1、提示:利用速度合成定理,作速度的矢量三角形。答案为:3。

2、提示:三角形各边的方向为飞机合速度的方向(而非机头的指向);

第二段和第三段大小相同。

参见右图,显然:

v2 =  + u2 - 2vucos120°

可解出 v = 24km/h 。

答案:0.2hour(或12min.)。

3、提示:方法与练习一类似。答案为:3

4、提示:(1)写成参数方程后消参数θ。

(2)解法有讲究:以A端为参照, 则杆上各点只绕A转动。但鉴于杆子的实际运动情形如右图,应有v = vAcosθ,v = vA,可知B端相对A的转动线速度为:v + vAsinθ=  

P点的线速度必为  = v 

所以 vPx = vcosθ+ vAx ,vPy = vAy - vsinθ

答案:(1) +  = 1 ,为椭圆;(2)vPx = avActgθ ,vPy =(1 - a)vA

查看答案和解析>>

在探究求合力的方法时,先将橡皮条的一端固定在水平木板上,另一端系上带有绳套的两根细绳.实验时,需要两次拉伸橡皮条,一次是通过两细绳用两个弹簧秤互成角度地拉橡皮条,另一次是用一个弹簧秤通过细绳拉橡皮条.
(1)实验对两次拉伸橡皮条的要求中,下列哪些说法是正确的
 
(填字母代号).
①将橡皮条拉伸相同长度即可
②将橡皮条沿相同方向拉到相同长度
③将弹簧秤都拉伸到相同刻度
④将橡皮条和绳的结点拉到相同位置
A.②④B.①③C.①④D.②③
(2)同学们在操作过程中有如下议论,其中对减小实验误差有益的说法是
 
(填字母代号).
①两细绳必须等长
②弹簧秤、细绳、橡皮条都应与木板平行
③用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大
④拉橡皮条的细绳要长些,标记同一细绳方向的两点要远些
A.①③B.②③
C.①④D.②④
(3)在实验中,如果只将细绳换成橡皮筋,其他步骤没有改变,那么实验结果是否会发生变化?答:
 
(选填“变”或“不变”)
(4)本实验采用的科学方法是
 

A.理想实验法    B.等效替代法
C.控制变量法       D.建立物理模型法.

查看答案和解析>>

在做“探究求合力的方法”实验时,橡皮条的一端固定在木板上,用两个力把橡皮条的另一端拉到某一确定的O点,
(1)以下操作中正确的是
 

A.同一次实验中,O点位置允许变动
B.实验中,橡皮条及施加的外力必须保持与木板平行
C.实验中,只要记录力的大小
D.实验中,两个力之间夹角应取90°,以便于算出合力大小
(2)本实验采用的科学方法是
 

A.理想实验法 B.等效替代法 C.控制变量法D.类比法.

查看答案和解析>>


同步练习册答案