解:(1) ∵双曲线过点 ∴ ∵双曲线过点 ∴ 由直线过点得,解得 ∴反比例函数关系式为,一次函数关系式为. (2)存在符合条件的点,.理由如下: ∵∽ ∴∴.如右图,设直线与轴.轴分别相交于点.,过点作轴于点,连接.则, 故,再由得,从而,因此,点的坐标为. 查看更多

 

题目列表(包括答案和解析)

已知直线l:y=-x+m(m≠0)交x轴、y轴于A、B两点,点C、M分别在线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将△ACM绕点M旋转180°,得到△FEM,则点E在y轴上,点F在直线l上;取线段EO中点N,将ACM沿MN所在直线翻折,得到△PMG,其中P与A为对称点.记:过点F的双曲线为C1,过点M且以B为顶点的抛物线为C2,过点P以M为顶点的抛物线为C3
(1)如图,当m=6时,①直接写出点M、F的坐标,②求C1、C2的函数解析式;
(2)当m发生变化时,①在C1的每一支上,y随x的增大如何变化请说精英家教网明理由.②若C2、C3中的y都随着x的增大而减小,写出x的取值范围.

查看答案和解析>>

已知直线l:y=-x+m(m≠0)交x轴、y轴于A、B两点,点C、M分别在线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将△ACM绕点M旋转180°,得到△FEM,则点E在y轴上,点F在直线l上;取线段EO中点N,将ACM沿MN所在直线翻折,得到△PMG,其中P与A为对称点.记:过点F的双曲线为C1,过点M且以B为顶点的抛物线为C2,过点P以M为顶点的抛物线为C3
(1)如图,当m=6时,①直接写出点M、F的坐标,②求C1、C2的函数解析式;
(2)当m发生变化时,①在C1的每一支上,y随x的增大如何变化请说明理由.②若C2、C3中的y都随着x的增大而减小,写出x的取值范围.

查看答案和解析>>

已知直线l:y=-x+m(m≠0)交x轴、y轴于A、B两点,点C、M分别在线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将△ACM绕点M 旋转180°,得到△FEM,则点E在y轴上, 点F在直线l上;取线段EO中点N,将ACM沿MN所在直线翻折,得到△PMG,其中P与A为对称点.记:过点F的双曲线为C1,过点M且以B为顶点的抛物线为C2,过点P且以M 为顶点的抛物线为C3.
(1) 如图,当m=6时,①直接写出点M、F的坐标, ②求C1、C2的函数解析式;
(2)当m发生变化时, ①在C1的每一支上,y随x的增大如何变化?请说明理由。
                                     ②若C2、C3中的y都随着x的增大而减小,写出x的取值范围。

查看答案和解析>>

已知直线l:y=-x+m(m≠0)x轴、y轴于A、B两点,点C、M分别在

线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将△ACM绕点M

旋转180°,得到△FEM,则点E在y轴上, 点F在直线l上;取线段EO中

点N,将ACM沿MN所在直线翻折,得到△PMG,其中P与A为对称点.记:

过点F的双曲线为6ec8aac122bd4f6e,过点M且以B为顶点的抛物线为6ec8aac122bd4f6e,过点P且以M

为顶点的抛物线为6ec8aac122bd4f6e.(1) 如图,当m=6时,①直接写出点M、F的坐标,

②求6ec8aac122bd4f6e6ec8aac122bd4f6e的函数解析式;

(2)当m发生变化时, ①在6ec8aac122bd4f6e的每一支上,y随x的增大如何变化?请说明理由。

                      ②若6ec8aac122bd4f6e6ec8aac122bd4f6e中的y都随着x的增大而减小,写出x的取值范围。

6ec8aac122bd4f6e
 


查看答案和解析>>

已知直线l:y=-x+m(m≠0x轴、y轴于A、B两点,点C、M分别在

线段OA、AB上,且OC=2CA,AM=2MB,连接MC,将△ACM绕点M

旋转180°,得到△FEM,则点E在y轴上, 点F在直线l上;取线段EO中

点N,将ACM沿MN所在直线翻折,得到△PMG,其中P与A为对称点.记:

过点F的双曲线为,过点M且以B为顶点的抛物线为,过点P且以M

为顶点的抛物线为.(1) 如图10,当m=6时,①直接写出点M、F的坐标,

②求的函数解析式;

(2)当m发生变化时, ①在的每一支上,y随x的增大如何变化?请说明理由。

                      ②若中的y都随着x的增大而减小,写出x的取值范围。


查看答案和解析>>


同步练习册答案