22.解:(1)设反比例函数关系式为. 反比例函数图象经过点. .···························································· 2分 反比例函数关第式.······························ 3分 (2)点在上. .·················································································································· 5分 .················································································································ 6分 (3)示意图.·············································································································· 8分 当或时.一次函数的值大于反比例函数的值.···································· 10分 查看更多

 

题目列表(包括答案和解析)

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>

如图,一次函数图象交反比例函数y=
6x
(x>0)
图象于点M、N(N在M右侧),分别交x轴、y轴于点C、D.过点M、N作ME、NF分别垂直x轴,垂足为E、F.再过点E、F作EG、FH平行MN直线,分别交y轴于点G、H,ME交精英家教网FH于点K.
(1)如果线段OE、OF的长是方程a2-4a+3=0的两个根,求该一次函数的解析式;
(2)设点M、N的横坐标分别为m、n,试探索四边形MNFK面积与四边形HKEG面积两者的数量关系;
(3)求证:MD=CN.

查看答案和解析>>

如图,一次函数图象交反比例函数数学公式图象于点M、N(N在M右侧),分别交x轴、y轴于点C、D.过点M、N作ME、NF分别垂直x轴,垂足为E、F.再过点E、F作EG、FH平行MN直线,分别交y轴于点G、H,ME交FH于点K.
(1)如果线段OE、OF的长是方程a2-4a+3=0的两个根,求该一次函数的解析式;
(2)设点M、N的横坐标分别为m、n,试探索四边形MNFK面积与四边形HKEG面积两者的数量关系;
(3)求证:MD=CN.

查看答案和解析>>

如图,一次函数图象交反比例函数图象于点M、N(N在M右侧),分别交x轴、y轴于点C、D.过点M、N作ME、NF分别垂直x轴,垂足为E、F.再过点E、F作EG、FH平行MN直线,分别交y轴于点G、H,ME交FH于点K.
(1)如果线段OE、OF的长是方程a2-4a+3=0的两个根,求该一次函数的解析式;
(2)设点M、N的横坐标分别为m、n,试探索四边形MNFK面积与四边形HKEG面积两者的数量关系;
(3)求证:MD=CN.

查看答案和解析>>

如图所示,已知:一次函数的图像经过第一、二、三象限,且与反比例函数的图像交于A、B两点,与y轴交于点C,与x轴交于点D,OB=,tan∠DOB=

(1)求反比例函数的解析式;

(2)设点A的横坐标为m,△ABO的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.

(3)当△OCD的面积等于时,试判断过A、B两点的抛物线在x轴上截得的线段长能否等于3.如果能,求此时抛物线的解析式;如果不能,请说明理由.

查看答案和解析>>


同步练习册答案