C(整体把握文章.依相关中心句的表述可得) 查看更多

 

题目列表(包括答案和解析)

(1)列举法:把集合中的元素     出来,写在     内表示集合的方法.列举法表示集合的特点是清晰、直观.集合中元素的个数较少时常适用于列举法.?

(2)描述法:把集合中的元素     的描述出来,写在     内表示集合的方法.一般形式是{x|p},其中竖线前面的x叫做此集合的代表元素,竖线后面的p指出元素x所具有的公共属性.描述法便于从整体上把握一个集合,常适用于集合中元素的公共属性较为明显时.

(3)韦恩图:为了形象地表示集合,有时常用一些封闭的     表示一个集合,这样的图形称为韦恩图,在解题时,利用韦恩图“数”和“形”结合,使得解答十分直观.?

如集合A={abc}可形象地表示为图(1)或图(2).?

                        (1)                  (2)

查看答案和解析>>

现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市“楼市限购令”赞成人数如下表.
月收入(单位百元) [15,25) [25,35) [35,45) [45,55) [55,65) [65,75)
频数 5 10 15 10 5 5
赞成人数 4 8 12 5 2 1
(Ⅰ)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令”的态度有差异;
月收入不低于55百元的人数 月收入低于55百元的人数 合计
赞成 a= c=
不赞成 b= d=
合计
(Ⅱ)若对在[15,25),[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为ξ,求随机变量ξ的分布列及数学期望.
参考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d.
参考值表:
P(K^2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

精英家教网某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.
(Ⅰ)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(Ⅱ)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(此公式也可写成x2=
n(n11 n22-n12n21)2
n1+ n2+n+1n+2

P(k2≥K) 0.25 0.15 0.10 0.05 0.025
k 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

(2013•临沂一模)某校为了研究学生的性别和对待某一活动的态度(支持和不支持两种态度)的关系,运用2×2列联表进行独立性检验,经计算K2=7.069,则所得到的统计学结论是:有(  )的把握认为“学生性别与支持该活动有关系”.
P(k2≥k0 0.100 0.050 0.025 0.010 0.001
k0 2.706 3.841 5.024 6.635 10.828

查看答案和解析>>

随着生活水平的提高,儿童的身高越来越成为人们关注的话题,某心理研究机构从边区某小学四年级学生中随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).
(1)现先用分层抽样的方法从各组中共选取20人作为样本,然后再从第四组或第五组选出的人中选出两人进行进一步分析,则这两人来自不同组的概率是多少?
(2)若将身高超过130cm称为正常,低于130cm称为偏低,抽出的20名学生按性别与身高统计具体分布情况如下:
正常 2 5
偏低 10 3
用假设检验的方法分析:有多大的把握认为该年级学生的身高是否正常与性别有关?
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.07 2.71 3.84 5.02 6.64 7.88 10.83
参考公式及数据K2=
n(ad-bc)2
(a+c)(b+d)(a+b)(c+d)

查看答案和解析>>


同步练习册答案