题目列表(包括答案和解析)
(16分)现有甲、乙两个盒子,甲盒中装有4个白球和4个红球,乙盒中装有3个白球和若干个红球,若从乙盒中任取两个球,取到同色球的概率是.
(Ⅰ)求乙盒中红球的个数;
(Ⅱ)若从甲盒中任取两个球,放入乙盒中均匀后,再从乙盒中任意取出2个球放回到甲盒中,求甲盒中白球没有增加的概率;
(Ⅲ)从甲、乙两个盒子中各任取两个球进行交换,若交换后乙盒子中的白球数和红球数相等,就说这次交换是成功的,试求当进行150次交换(都从初始状态交换)时,大约有多少次是成功的.
(本题满分16分)
若定义在R上的函数对任意的,都有
成立,且当时,.
(1)求的值;
(2)求证:是R上的增函数;
(3) 若,不等式对任意的恒成立,求实数的取值范围.
(本题满分16分)
若定义在R上的函数对任意的,都有
成立,且当时,.
(1)求的值;
(2)求证:是R上的增函数;
(3) 若,不等式对任意的恒成立,求实数的取值范围.
(本题满分16分)
(文科学生做)已知命题p:函数在R上存在极值;
命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有;
若为真,为假,试求实数a的取值范围。
(理科学生做)已知命题p:对,函数有意义;
命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有;
若为真,为假,试求实数a的取值范围。
(本题满分16分) 已知数列是公差为的等差数列,数列是公比为的(q∈R)的等比数列,若函数,且,,,
(1)求数列和的通项公式;
(2)设数列的前n项和为,对一切,都有成立,求
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com