题目列表(包括答案和解析)
已知函数
,(
),![]()
(1)若曲线
与曲线
在它们的交点(1,c)处具有公共切线,求a,b的值
(2)当
时,若函数
的单调区间,并求其在区间(-∞,-1)上的最大值。
【解析】(1)
,
∵曲线
与曲线
在它们的交点(1,c)处具有公共切线
∴
,![]()
∴![]()
(2)令
,当
时,![]()
令
,得![]()
时,
的情况如下:
|
x |
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
|
所以函数
的单调递增区间为
,
,单调递减区间为![]()
当
,即
时,函数
在区间
上单调递增,
在区间
上的最大值为
,
当
且
,即
时,函数
在区间
内单调递增,在区间
上单调递减,
在区间
上的最大值为![]()
当
,即a>6时,函数
在区间
内单调递赠,在区间
内单调递减,在区间
上单调递增。又因为![]()
所以
在区间
上的最大值为
。
已知函数![]()
;
(1)若函数
在其定义域内为单调递增函数,求实数
的取值范围。
(2)若函数
,若在[1,e]上至少存在一个x的值使
成立,求实数
的取值范围。
【解析】第一问中,利用导数
,因为
在其定义域内的单调递增函数,所以
内满足
恒成立,得到结论第二问中,在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,转换为不等式有解来解答即可。
解:(1)
,
因为
在其定义域内的单调递增函数,
所以
内满足
恒成立,即
恒成立,
亦即
,
即可 又![]()
当且仅当
,即x=1时取等号,
在其定义域内为单调增函数的实数k的取值范围是
.
(2)在[1,e]上至少存在一个x的值使
成立,等价于不等式
在[1,e]上有解,设![]()
上的增函数,
依题意需![]()
实数k的取值范围是![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com