6.已知数列{an}的通项公式是an=n2+kn+2.若对于n∈N*.都有an+1>an成立.则实数k的取值范围是 ( ) A.k>0 B.k>-1 C.k>-2 D.k>-3 [解析] an+1>an.即(n+1)2+k(n+1)+2>n2+kn+2. 则k>-(2n+1)对于n∈N*都成立.而-(2n+1)当n=1时取得最大值-3.所以k>-3. [答案] D 查看更多

 

题目列表(包括答案和解析)

已知数列{an}的通项公式是an=n2+kn+2,若对于m∈N*,都有an+1>an成立,则实数k的取值范围是

[  ]

A.k>0

B.k>-1

C.k>-2

D.k>-3

查看答案和解析>>


同步练习册答案