5.独立性检验: 随机变量越大.说明两个分类变量.关系越强.反之.越弱. 查看更多

 

题目列表(包括答案和解析)

给出下列四个结论:
①在画两个变量的散点图时,预报变量在x轴上,解释变量在y轴上;
②线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越小;
③用独立性检验(2Χ2列联表法)来考察两个分类变量是否有关系时,算出的随机变量k2的值越大,说明“x与y有关系”成立的可能性越大;
④残差平方和越小的模型,拟合的效果越好;
其中结论正确的序号为
③④
③④
.(写出你认为正确的所有结论的序号)

查看答案和解析>>

给出下列四个结论:

①在画两个变量的散点图时,预报变量在轴上,解释变量在轴上;

②线性相关系数r越大,两个变量的线性相关性越强;反之,线性相关性越小;

③用独立性检验(2Χ2列联表法)来考察两个分类变量是否有关系时,算出的随机变量k2的值越大,说明“x与y有关系”成立的可能性越大;

④残差平方和越小的模型,拟合的效果越好;

其中结论正确的序号为             。(写出你认为正确的所有结论的序号)

 

查看答案和解析>>

某中学研究性学习小组,为了考察高中学生的作文水平与爱看课外书的关系,在本校高三年级随机调查了 50名学生.调査结果表明:在爱看课外书的25人中有18人作文水平好,另7人作文水平一般;在不爱看课外书的25人中有6人作文水平好,另19人作文水平一般.

(Ⅰ)试根据以上数据完成以下2×2列联表,并运用独立性检验思想,指出有多大把握认为中学生的作文水平与爱看课外书有关系?

高中学生的作文水平与爱看课外书的2×2列联表

 

爱看课外书

不爱看课外书

总计

作文水平好

 

 

 

作文水平一般

 

 

 

总计

 

 

 

(Ⅱ)将其中某5名爱看课外书且作文水平好的学生分别编号为1、2、3、4、5,某5名爱看课外书且作文水平一般的学生也分别编号为1、2、3、4、5,从这两组学生中各任选1人进行学习交流,求被选取的两名学生的编号之和为3的倍数或4的倍数的概率.

参考公式:,其中.

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【解析】本试题主要考查了古典概型和列联表中独立性检验的运用。结合公式为判定两个分类变量的相关性,

第二问中,确定

结合互斥事件的概率求解得到。

解:因为2×2列联表如下

 

爱看课外书

不爱看课外书

总计

作文水平好

 18

 6

 24

作文水平一般

 7

 19

 26

总计

 25

 25

 50

 

查看答案和解析>>

给出下列四个结论:
(1)合情推理是由特殊到一般的推理,得到的结论不一定正确,演绎推理是由一般到特殊的推理,得到的结论一定正确;
(2)一般地,当r的绝对值大于0.75时,认为两个变量之间有很强的线性相关关系,如果变量y与x之间的相关系数r=-0.9568,则变量y与x之间具有线性关系;
(3)用独立性检验(2×2列联表法)来考察两个分类变量是否有关系时,算出的随机变量x2的值越大,说明“x与y有关系”成立的可能性越大;
(4)已知a,b∈R,若a-b>0则a>b;同样的已知a,b∈C(C为复数集)若a-b>0则a>b.
其中结论正确的序号为
(2)(3)
(2)(3)
.(写出你认为正确的所有结论的序号)

查看答案和解析>>

(08年聊城市一模) 给出以下命题:

①合情推理是由特殊到一般的推理,得到的结论不一定正确,演绎推是由一般到特殊的推理,得到的结论一定正确。

②甲、乙两同学各自独立地考察两个变量X、Y的线性相关关系时,发现两人对X的观察数据的平均值相等,都是s,对Y的观察数据的平均值也相等,都是t,各自求出的回归直线分别是l1l2,则直线l1l2必定相交于点(st)。

③某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,若用分层抽样的方法抽出一个容量为30的样本,则一般职员应抽出20人。

④用独立性检验(2×2列联表法)来考察两个分类变量是否有关系时,算出的随机变量K2的值越大,说明“X与Y有关系”成立的可能性越大。

其中真命题的序号是           (写出所有真命题的序号)。

查看答案和解析>>


同步练习册答案