题目列表(包括答案和解析)
第九部分 稳恒电流
第一讲 基本知识介绍
第八部分《稳恒电流》包括两大块:一是“恒定电流”,二是“物质的导电性”。前者是对于电路的外部计算,后者则是深入微观空间,去解释电流的成因和比较不同种类的物质导电的情形有什么区别。
应该说,第一块的知识和高考考纲对应得比较好,深化的部分是对复杂电路的计算(引入了一些新的处理手段)。第二块虽是全新的内容,但近几年的考试已经很少涉及,以至于很多奥赛培训资料都把它删掉了。鉴于在奥赛考纲中这部分内容还保留着,我们还是想粗略地介绍一下。
一、欧姆定律
1、电阻定律
a、电阻定律 R = ρ![]()
b、金属的电阻率 ρ = ρ0(1 + αt)
2、欧姆定律
a、外电路欧姆定律 U = IR ,顺着电流方向电势降落
b、含源电路欧姆定律
![]()
在如图8-1所示的含源电路中,从A点到B点,遵照原则:①遇电阻,顺电流方向电势降落(逆电流方向电势升高)②遇电源,正极到负极电势降落,负极到正极电势升高(与电流方向无关),可以得到以下关系
UA ? IR ? ε ? Ir = UB
这就是含源电路欧姆定律。
c、闭合电路欧姆定律
在图8-1中,若将A、B两点短接,则电流方向只可能向左,含源电路欧姆定律成为
UA + IR ? ε + Ir = UB = UA
即 ε = IR + Ir ,或 I = ![]()
这就是闭合电路欧姆定律。值得注意的的是:①对于复杂电路,“干路电流I”不能做绝对的理解(任何要考察的一条路均可视为干路);②电源的概念也是相对的,它可以是多个电源的串、并联,也可以是电源和电阻组成的系统;③外电阻R可以是多个电阻的串、并联或混联,但不能包含电源。
二、复杂电路的计算
1、戴维南定理:一个由独立源、线性电阻、线性受控源组成的二端网络,可以用一个电压源和电阻串联的二端网络来等效。(事实上,也可等效为“电流源和电阻并联的的二端网络”——这就成了诺顿定理。)
应用方法:其等效电路的电压源的电动势等于网络的开路电压,其串联电阻等于从端钮看进去该网络中所有独立源为零值时的等效电阻。
2、基尔霍夫(克希科夫)定律
![]()
a、基尔霍夫第一定律:在任一时刻流入电路中某一分节点的电流强度的总和,等于从该点流出的电流强度的总和。
例如,在图8-2中,针对节点P ,有
I2 + I3 = I1
基尔霍夫第一定律也被称为“节点电流定律”,它是电荷受恒定律在电路中的具体体现。
对于基尔霍夫第一定律的理解,近来已经拓展为:流入电路中某一“包容块”的电流强度的总和,等于从该“包容块”流出的电流强度的总和。
b、基尔霍夫第二定律:在电路中任取一闭合回路,并规定正的绕行方向,其中电动势的代数和,等于各部分电阻(在交流电路中为阻抗)与电流强度乘积的代数和。
例如,在图8-2中,针对闭合回路① ,有
ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2
基尔霍夫第二定律事实上是含源部分电路欧姆定律的变体(☆同学们可以列方程 UP = … = UP得到和上面完全相同的式子)。
3、Y?Δ变换
![]()
在难以看清串、并联关系的电路中,进行“Y型?Δ型”的相互转换常常是必要的。在图8-3所示的电路中
☆同学们可以证明Δ→ Y的结论…
Rc = ![]()
Rb = ![]()
Ra = ![]()
Y→Δ的变换稍稍复杂一些,但我们仍然可以得到
R1 = ![]()
R2 = ![]()
R3 = ![]()
三、电功和电功率
1、电源
使其他形式的能量转变为电能的装置。如发电机、电池等。发电机是将机械能转变为电能;干电池、蓄电池是将化学能转变为电能;光电池是将光能转变为电能;原子电池是将原子核放射能转变为电能;在电子设备中,有时也把变换电能形式的装置,如整流器等,作为电源看待。
电源电动势定义为电源的开路电压,内阻则定义为没有电动势时电路通过电源所遇到的电阻。据此不难推出相同电源串联、并联,甚至不同电源串联、并联的时的电动势和内阻的值。
例如,电动势、内阻分别为ε1 、r1和ε2 、r2的电源并联,构成的新电源的电动势ε和内阻r分别为(☆师生共同推导…)
ε = ![]()
r = ![]()
2、电功、电功率
电流通过电路时,电场力对电荷作的功叫做电功W。单位时间内电场力所作的功叫做电功率P 。
计算时,只有W = UIt和P = UI是完全没有条件的,对于不含源的纯电阻,电功和焦耳热重合,电功率则和热功率重合,有W = I2Rt =
t和P = I2R =
。
对非纯电阻电路,电功和电热的关系依据能量守恒定律求解。
四、物质的导电性
在不同的物质中,电荷定向移动形成电流的规律并不是完全相同的。
1、金属中的电流
即通常所谓的不含源纯电阻中的电流,规律遵从“外电路欧姆定律”。
2、液体导电
能够导电的液体叫电解液(不包括液态金属)。电解液中离解出的正负离子导电是液体导电的特点(如:硫酸铜分子在通常情况下是电中性的,但它在溶液里受水分子的作用就会离解成铜离子Cu2+和硫酸根离子S
,它们在电场力的作用下定向移动形成电流)。
在电解液中加电场时,在两个电极上(或电极旁)同时产生化学反应的过程叫作“电解”。电解的结果是在两个极板上(或电极旁)生成新的物质。
液体导电遵从法拉第电解定律——
法拉第电解第一定律:电解时在电极上析出或溶解的物质的质量和电流强度、跟通电时间成正比。表达式:m = kIt = KQ (式中Q为析出质量为m的物质所需要的电量;K为电化当量,电化当量的数值随着被析出的物质种类而不同,某种物质的电化当量在数值上等于通过1C电量时析出的该种物质的质量,其单位为kg/C。)
法拉第电解第二定律:物质的电化当量K和它的化学当量成正比。某种物质的化学当量是该物质的摩尔质量M(克原子量)和它的化合价n的比值,即 K =
,而F为法拉第常数,对任何物质都相同,F = 9.65×104C/mol 。
将两个定律联立可得:m =
Q 。
3、气体导电
气体导电是很不容易的,它的前提是气体中必须出现可以定向移动的离子或电子。按照“载流子”出现方式的不同,可以把气体放电分为两大类——
a、被激放电
在地面放射性元素的辐照以及紫外线和宇宙射线等的作用下,会有少量气体分子或原子被电离,或在有些灯管内,通电的灯丝也会发射电子,这些“载流子”均会在电场力作用下产生定向移动形成电流。这种情况下的电流一般比较微弱,且遵从欧姆定律。典型的被激放电情形有
b、自激放电
但是,当电场足够强,电子动能足够大,它们和中性气体相碰撞时,可以使中性分子电离,即所谓碰撞电离。同时,在正离子向阴极运动时,由于以很大的速度撞到阴极上,还可能从阴极表面上打出电子来,这种现象称为二次电子发射。碰撞电离和二次电子发射使气体中在很短的时间内出现了大量的电子和正离子,电流亦迅速增大。这种现象被称为自激放电。自激放电不遵从欧姆定律。
常见的自激放电有四大类:辉光放电、弧光放电、火花放电、电晕放电。
4、超导现象
据金属电阻率和温度的关系,电阻率会随着温度的降低和降低。当电阻率降为零时,称为超导现象。电阻率为零时对应的温度称为临界温度。超导现象首先是荷兰物理学家昂尼斯发现的。
超导的应用前景是显而易见且相当广阔的。但由于一般金属的临界温度一般都非常低,故产业化的价值不大,为了解决这个矛盾,科学家们致力于寻找或合成临界温度比较切合实际的材料就成了当今前沿科技的一个热门领域。当前人们的研究主要是集中在合成材料方面,临界温度已经超过100K,当然,这个温度距产业化的期望值还很远。
5、半导体
半导体的电阻率界于导体和绝缘体之间,且ρ
| 待测量 | 第1组 | 第2组 | 第3组 | 第4组 | 第5组 | 第6组 |
| I/A | 0.11 | 0.20 | 0.30 | 0.40 | 0.50 | 0.56 |
| U/V | 2.87 | 2.85 | 2.83 | 2.82 | 2.79 | 2.58 |
| 待测量 | 第1组 | 第2组 | 第3组 | 第4组 | 第5组 | 第6组 |
| I/A | 0.11 | 0.20 | 0.30 | 0.40 | 0.50 | 0.56 |
| U/V | 2.87 | 2.85 | 2.83 | 2.82 | 2.79 | 2.58 |
| U/V | 0 | 1.0 | 2.2 | 3.0 | 5.0 | 8.0 | 10.0 | 12.0 |
| I/A | 0 | 0.08 | 0.15 | 0.20 | 0.30 | 0.40 | 0.45 | 0.50 |
| 时刻t/s | 0 | 0.89 | 1.24 | 1.52 | 1.76 | 1.97 |
| 位移x/m | 0 | 0.25 | 0.50 | 0.75 | 1.00 | 1.25 |
| T2/s2 | 0 | 0.79 | 1.54 | 2.31 | 3.10 | 3.88 |
| 1 |
| 2 |
| 1 |
| 2 |
一、本题共10小题.每小题5分,共50分。在每小题给出的四个选项中。有的小题只有一个选项正确,有的小题有多个选项正确。全部选对的得5分,选不全的得3分,有选错的或不答的得0分。
题号
1
2
3
4
5
6
7
8
9
10
答案
D
B
D
A
B
D
B
BC
CD
ABD
二、实验题:本题共三小题,共计18分
11.(4分)、1.25V 11.2(11.3)V 12 (4分)、BC
13.参考解答:(1)A2 ;R1 (2分)(2)滑动变阻器分压接法;电流表外接(4分)
(3)由图可知:U1=1.00 V时,I1=0.155A U2=2.00V时,I2=0.250A
得
由于小灯珠两端的电压升高时,灯丝的温度升高,导致灯丝电阻变大,所以有:
>
(2分)
(4) 刚开始通过小灯珠的电流很小时,根据焦耳定律Q=I2Rt可知,灯丝发出的热量还不能使它的温度上升得足够高,因此它不亮. (2分)
三、计算题:本题共4小题,52分,解答应写出必要的文字说明、方程式和主要演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值与单位。
14.解:(10分)设灯泡的额定电压为U,额定电流为I。
则当K闭合时,根据全电路的欧姆定律可得:E=U+2I(R1+r+R2)
当K断开后,要灯泡仍正常发光,必有:E=U+I(R1+r+R/2)
由以上二式联立可得:(R1+r+R/2)=2(R1+r+R2) 求得R/2=50Ω.
15.(12分)(1).宇航员所受到地球的引力全部提供绕地球作圆周运动所需的向心力,宇航员处于完全失重状态. 2分
(2). 飞船绕地球做匀速圆周运动,万有引力提供向心力,则有:
GMm/(R+h)2=m(2π/T)2(R+h) 2分
地表物体的重力等于物体受到的万有引力,则有:m/g=GMm//R2 2分
解得:
2分
(3).设空气阻力为f,由题设可知 f=kv2 ,匀速下降时 f=m
, 1分
由此可解得匀速下降的速度为
,
1分
单位时间内转化为内能的机械能为:
2分
16(14分)解:(1) 由小球运动到最高点可知,小球带正电. (2分)
(2)设小球运动到最高点时的速度为v, 对该过程中,由动能定理有:
(qE-mg)L=
① (2分)
在最高点小球在细线断裂前瞬间,设细线拉力为T,则根据牛顿第二定律有:
T+mg-qE=
② (2分)
由①②式及题中数据可得:T=15N (1分)
(3)小球在细线断裂后,在竖直方向的加速度设为a,得:
a=
,
③ (2分)
设C在水平方向运动L过程中历时为t,则水平方向上有:
L=vt ④ (1分)
设竖直方向的位移为s,则有:
⑤ (2分)
由①③④⑤式及题中数据解得:
0.125m
(1分)
所以当小球运动到与O点水平方向相距L时,小球距O的高度为
m
(1分)
17.(16分) (1)设粒子经PT直线上的点R由E0电场进入E1电场,由Q到R及R到M点的时间分别为t1与t2,到达R时竖直速度为vy,则:
由
、
及
得:
①
②
.files/image070.gif)
③
④
上述三式联立解得:
,
即
(8分)。
(2)由E1=2E0及③式可得t1=2t2。
因沿PT方向粒子做匀速运动,故P、R两点间的距离是R、T两点间距离的两倍。即粒子在E0电场做类平抛运动在PT方向的位移是在E1电场中的两倍。
设PQ间到P点距离为△y的F处射出的粒子通过电场后也沿水平方向,若粒子第一次达PT直线用时△t,水平位移为△x,则
(1分)
粒子在电场E1中可能做类平抛运动后垂直CD边射出电场,也可能做类斜抛运动后返回E0电场,在E0电场中做类平抛运动垂直CD水平射出,或在E0电场中做类斜抛运动再返回E1电场。
若从E1电场垂直CD射出,则
(n=0、1、2、3、……)
解得:
(n=0、1、2、3、……)
若粒子从E0电场垂直CD射出电场,则
(k=1、2、3、……)
(k=1、2、3、……)(8分)
即PF间的距离为
其中n=0、1、2、3、……,k=1、2、3、……
解得:
(n=1、2、3、……)
即PF间的距离为
(n = 1,2,3,……)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com