韦达定理: 方程()的二实根为..则 查看更多

 

题目列表(包括答案和解析)

若方程ax2+bx+c=0(a≠0)有两个实根x1,x2,则有 x1+x2=-
b
a
x1x2=
c
a
此定理叫韦达定理,根据韦达定理可以求解下题:已知lgm,lgn是方程2x2-4x+1=0的两个实数根,则
(1)求mn的值;
(2)求lognm+logmn的值.

查看答案和解析>>

过抛物线的对称轴上的定点,作直线与抛物线相交于两点.

(I)试证明两点的纵坐标之积为定值;

(II)若点是定直线上的任一点,试探索三条直线的斜率之间的关系,并给出证明.

【解析】本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.

(1)中证明:设下证之:设直线AB的方程为: x=ty+m与y2=2px联立得消去x得y2=2pty-2pm=0,由韦达定理得 

 (2)中:因为三条直线AN,MN,BN的斜率成等差数列,下证之

设点N(-m,n),则直线AN的斜率KAN=,直线BN的斜率KBN=

  

KAN+KBN=+

本题主要考查抛物线与直线的位置关系以及发现问题和解决问题的能力.

 

查看答案和解析>>

已知抛物线直线过抛物线的焦点且与该抛物线交于两点(点A在第一象限)   

(Ⅰ)若,求直线的方程;

(Ⅱ)过点的抛物线的切线与直线交于点,求证:

【解析】本试题主要是考查了直线与抛物线的位置关系,利用联立方程组,结合韦达定理求解弦长和直线的方程,以及证明垂直问题。

 

查看答案和解析>>

如图,已知直线)与抛物线和圆都相切,的焦点.

(Ⅰ)求的值;

(Ⅱ)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,    直线轴交点为,连接交抛物线两点,求△的面积的取值范围.

【解析】第一问中利用圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以

第二问中,由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形

因为是定点,所以点在定直线

第三问中,设直线,代入结合韦达定理得到。

解:(Ⅰ)由已知,圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去).     …………………(2分)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形,

因为是定点,所以点在定直线上.…(2分)

(Ⅲ)设直线,代入,  ……)得,                 ……………………………     (2分)

的面积范围是

 

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步练习册答案