26.如图18.抛物线F:的顶点为P.抛物线:与y轴交于点A.与直线OP交于点B.过点P作PD⊥x轴于点D.平移抛物线F使其经过点A.D得到抛物线F′:.抛物线F′与x轴的另一个交点为C. ⑴当a = 1.b=-2.c = 3时.求点C的坐标, ⑵若a.b.c满足了 ①求b:b′的值, ②探究四边形OABC的形状.并说明理由. 查看更多

 

题目列表(包括答案和解析)

我们通过计算发现:抛物线y=x2+2x-1的顶点(-1,-2)在抛物线y=-x2+2x+1上,同时抛物线y=-x2+2x+1的顶点(1,2)也在抛物线y=x2+2x-1上,这时我们称这两条抛物线是相关的.
(1)问:抛物线y=x2-2x-1与抛物线y=-x2-2x+1是否相关,并说明理由.
(2)如图,已知抛物线C:y=
18
(x+1)2-2,顶点为M.
①若有一动点P的坐标为(m,2),现将抛物线C绕点P(m,2)旋转180°得到新的抛物线C′,且抛物线C与新的抛物线C′相关,求抛物线C′的解析式.
②若抛物线C′与C相关,顶点为N,现以MN为斜边作等腰直角△MNQ,问y轴上是否存在满足要求的点Q?若存在,求出Q点的坐标;若不存在,请说明理由.

查看答案和解析>>

精英家教网如图:是一抛物线型钢结构,钢结构CD的跨度为20米,拱高CC’=2米.假定用吊车从地面吊起,吊钩位于抛物线顶点O的正上方12.5米点F处,吊绳分别挂在距离地面1.75米的A、B两处,求吊绳的FA、FB的总长.(计算过程中可能用到以下参考数据:4.32=18.49,4.72=22.09,5.32=28.09,5.72=32.49)

查看答案和解析>>

如图:是一抛物线型钢结构,钢结构CD的跨度为20米,拱高CC’=2米.假定用吊车从地面吊起,吊钩位于抛物线顶点O的正上方12.5米点F处,吊绳分别挂在距离地面1.75米的A、B两处,求吊绳的FA、FB的总长.(计算过程中可能用到以下参考数据:4.32=18.49,4.72=22.09,5.32=28.09,5.72=32.49)

查看答案和解析>>

(2004•奉贤区二模)如图:是一抛物线型钢结构,钢结构CD的跨度为20米,拱高CC’=2米.假定用吊车从地面吊起,吊钩位于抛物线顶点O的正上方12.5米点F处,吊绳分别挂在距离地面1.75米的A、B两处,求吊绳的FA、FB的总长.(计算过程中可能用到以下参考数据:4.32=18.49,4.72=22.09,5.32=28.09,5.72=32.49)

查看答案和解析>>

(2010•路南区三模)研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x(吨)时,所需的全部费用y(万元)与x满足关系式y=
1
10
x2+6x+80
,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p、p(万元)均与x满足一次函数关系.(注:年利润=年销售额-全部费用)
(1)成果表明,在甲地生产并销售x吨时,每吨的售价p(万元)与第一年的年产量为x(吨)之间大致满足如图所示的一次函数关系.请你直接写出p与x的函数关系式,并用含x的代数式表示甲地当年的年销售额;
(2)根据题中条件和(1)的结果,求年利润w(万元)与x(吨)之间的函数关系式和甲的最大年利润;
(3)成果表明,在乙地生产并销售x吨时,p=-
1
10
x+n
(n为常数),且在乙地当年的最大年利润为45万元.试确定n的值;
(4)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(2)、(3)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-
b
2a
4ac-b2
4a
)

查看答案和解析>>


同步练习册答案