10.如图.在四面体O―ABC中.OA=OB=OC=1. ∠AOB=∠AOC=.则二面角 20080422 查看更多

 

题目列表(包括答案和解析)

如图,在四面体O―ABC中,OA=OB=OC=1.∠AOB=∠AOC=,则二面角

20080422

 
 B―OA―C的大小是        

A.                         B.                         C.                         D.

查看答案和解析>>

如图所示,三棱锥O-ABC中,OA=OB=OC=2,且,OA、OB、OC两两垂直(每两条都垂直).
(1)求三棱锥O-ABC的体积;
(2)求三棱锥O-ABC的高(O点到平面ABC的距离);
(3)求三棱锥O-ABC外接球的表面积(三棱锥O-ABC四个顶点都在球面上).

查看答案和解析>>

如图,设A、B、C是球O面上的三点,我们把大圆的劣弧在球面上围成的部分叫做球面三角形,记作球面三角形ABC,在球面三角形ABC中,OA=1,设,二面角B-OA-C、
C-OB-A、A-OC-B的大小分别为α、β、γ,给出下列命题:
①若,则球面三角形ABC的面积为
②若,则四面体OABC的侧面积为
③圆弧在点A处的切线l1与圆弧在点A处的切线l2的夹角等于a;
④若a=b,则α=β.
其中你认为正确的所有命题的序号是   

查看答案和解析>>

如图,设A、B、C是球O面上的三点,我们把大圆的劣弧在球面上围成的部分叫做球面三角形,记作球面三角形ABC,在球面三角形ABC中,OA=1,设,二面角B-OA-C、
C-OB-A、A-OC-B的大小分别为α、β、γ,给出下列命题:
①若,则球面三角形ABC的面积为
②若,则四面体OABC的侧面积为
③圆弧在点A处的切线l1与圆弧在点A处的切线l2的夹角等于a;
④若a=b,则α=β.
其中你认为正确的所有命题的序号是   

查看答案和解析>>

如图,设A、B、C是球O面上的三点,我们把大圆的劣弧在球面上围成的部分叫做球面三角形,记作球面三角形ABC,在球面三角形ABC中,OA=1,设,二面角B-OA-C、
C-OB-A、A-OC-B的大小分别为α、β、γ,给出下列命题:
①若,则球面三角形ABC的面积为
②若,则四面体OABC的侧面积为
③圆弧在点A处的切线l1与圆弧在点A处的切线l2的夹角等于a;
④若a=b,则α=β.
其中你认为正确的所有命题的序号是   

查看答案和解析>>

一、选择题

20080422

二、填空题

13.2    14.   15.   16.①③④

三、解答题

17.解:(1)……………………3分

……………………6分

(2)因为

………………9分

……………………12分

文本框:  18.方法一:

(1)证明:连结BD,

∵D分别是AC的中点,PA=PC=

∴PD⊥AC,

∵AC=2,AB=,BC=

∴AB2+BC2=AC2

∴∠ABC=90°,即AB⊥BC.…………2分

∴BD=

∵PD2=PA2―AD2=3,PB

∴PD2+BD2=PB2

∴PD⊥BD,

∵ACBD=D

∴PD⊥平面ABC.…………………………4分

(2)解:取AB的中点E,连结DE、PE,由E为AB的中点知DE//BC,

∵AB⊥BC,

∴AB⊥DE,

∵DE是直线PE的底面ABC上的射景

∴PE⊥AB

∴∠PED是二面角P―AB―C的平面角,……………………6分

在△PED中,DE=∠=90°,

∴tan∠PDE=

∴二面角P―AB―C的大小是

(3)解:设点E到平面PBC的距离为h.

∵VP―EBC=VE―PBC

……………………10分

在△PBC中,PB=PC=,BC=

而PD=

∴点E到平面PBC的距离为……………………12分

方法二:

(1)同方法一:

过点D作AB的平行线交BC于点F,以D为

原点,DE为x轴,DF为y轴,

DP为z轴,建立如图所示的空间直角坐标系.

则D(0,0,0),P(0,0,),

E(),B=(

上平面PAB的一个法向量,

则由

这时,……………………6分

显然,是平面ABC的一个法向量.

∴二面角P―AB―C的大小是……………………8分

(3)解:

平面PBC的一个法向量,

是平面PBC的一个法向量……………………10分

∴点E到平面PBC的距离为………………12分

19.解:(1)由题设,当价格上涨x%时,销售总金额为:

   (2)

……………………3分

当x=50时,

即该吨产品每吨的价格上涨50%时,销售总最大.……………………6分

(2)由(1)

如果上涨价格能使销假售总金额增加,

则有……………………8分

即x>0时,

注意到m>0

  ∴   ∴

∴m的取值范围是(0,1)…………………………12分

20.解(1)由已知,抛物线,焦点F的坐标为F(0,1)………………1分

l与y轴重合时,显然符合条件,此时……………………3分

l不与y轴重合时,要使抛物线的焦点F与原点O到直线l的距离相等,当且仅当直线l通过点()设l的斜率为k,则直线l的方程为

由已知可得………5分

解得无意义.

因此,只有时,抛物线的焦点F与原点O到直线l的距离相等.……7分

(2)由已知可设直线l的方程为……………………8分

则AB所在直线为……………………9分

代入抛物线方程………………①

的中点为

代入直线l的方程得:………………10分

又∵对于①式有:

解得m>-1,

l在y轴上截距的取值范围为(3,+)……………………12分

21.解:(1)由

……………………3分

又由已知

∴数列是以3为首项,以-1为公差的等差数列,且…………6分

(2)∵……………………8分

…………①

…………②………………10分

②―①得

……………………12分

22.解:(1)和[0,2]上有相反的单调性,

的一个极值点,故

   (2)令

因为和[4,5]上有相反的单调性,

和[4,5]上有相反的符号,

……………………7分

假设在点M在点M的切线斜率为3b,则

故不存在点M在点M的切线斜率为3b………………9分

   (3)∵的图象过点B(2,0),

,依题意可令

……………………12分

∴当

……………………14分