5.本章最后安排了实习作业.学生通过作业实践.体会函数模型的建立过程.真实感受数学的应用价值. 教师可指导学生分组完成.并认真小结.展示.表扬优秀的作业.并借以充实自己的教学案例 . 查看更多

 

题目列表(包括答案和解析)

已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.

【解析】本试题主要考查了二次方程根的问题的综合运用。运用反证法思想进行证明。

先反设,然后推理论证,最后退出矛盾。证明:假设三个方程中都没有两个相异实根,

则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.显然不成立。

证明:假设三个方程中都没有两个相异实根,

则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.                                      ①

由题意a、b、c互不相等,∴①式不能成立.

∴假设不成立,即三个方程中至少有一个方程有两个相异实根.

 

查看答案和解析>>

(本小题满分12分)

“神州”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东方向,仰角为救援中心测得飞船位于其南偏西方向,仰角为救援中心测得着陆点位于其正东方向.

(1)求两救援中心间的距离;

(2)救援中心与着陆点间的距离.

 

查看答案和解析>>

(本小题满分12分)
“神州”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东方向,仰角为救援中心测得飞船位于其南偏西方向,仰角为救援中心测得着陆点位于其正东方向.

(1)求两救援中心间的距离;
(2)救援中心与着陆点间的距离.

查看答案和解析>>

(本小题满分12分)

“神州”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东方向,仰角为救援中心测得飞船位于其南偏西方向,仰角为救援中心测得着陆点位于其正东方向.

(1)求两救援中心间的距离;

(2)救援中心与着陆点间的距离.

 

查看答案和解析>>

(本小题满分12分)
“神州”号飞船返回舱顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回舱预计到达的区域安排了同一条直线上的三个救援中心(记为).当返回舱距地面1万米的点时(假定以后垂直下落,并在点着陆),救援中心测得飞船位于其南偏东方向,仰角为救援中心测得飞船位于其南偏西方向,仰角为救援中心测得着陆点位于其正东方向.

(1)求两救援中心间的距离;
(2)救援中心与着陆点间的距离.

查看答案和解析>>


同步练习册答案