二面角,,,∠MAB=45º,AB与成30º,则二面角的大小为 查看更多

 

题目列表(包括答案和解析)

如图,在梯形ABCD中,AB∥C,AD=DC=CB=1,∠ABC═60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
(1)求证:BC⊥平面ACFE;
(2)求二面角A-BF-C的平面角的余弦值;
(3)若点M在线段EF上运动,设平MAB与平FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的取值范围.

查看答案和解析>>

(2006•石景山区一模)如图,三棱锥P-ABC中,
PA
AB
=
PA
AC
=
AB
AC
=0
PA
2
=
AC
2
=4
AB
2

(Ⅰ)求证:AB⊥平面PAC;
(Ⅱ)若M为线段PC上的点,设
|
PM|
|PC
|
,问λ为何值时能使直线PC⊥平面MAB;
(Ⅲ)求二面角C-PB-A的大小.

查看答案和解析>>

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD=2AB=2,M为PD上的点,若PD⊥平面MAB
(I)求证:M为PD的中点;
(II)求二面角A-BM-C的大小.

查看答案和解析>>

如图,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四边形ACFE为矩形,平面ACFE上平面ABCD,CF=1.
(I)求证:BC⊥平面ACFE;
(II)若M为线段EF的中点,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),求cosθ.

查看答案和解析>>

如图所示,在直三棱柱ABC-A1B1C1中,AB=BC=1,AA1=2,∠ABC=90°,M为棱CC1上的中点.
(1)求三棱锥C1-MAB的体积;
(2)求二面角C1-AB-C的平面角.

查看答案和解析>>


同步练习册答案