则由即.解得(舍)或 查看更多

 

题目列表(包括答案和解析)

求圆心在直线上,且经过原点及点的圆的标准方程.

【解析】本试题主要考查的圆的方程的求解,利用圆心和半径表示圆,首先设圆心C的坐标为(),然后利用,得到,从而圆心,半径.可得原点 标准方程。

解:设圆心C的坐标为(),...........2分

,即

,解得........4分

所以圆心,半径...........8分

故圆C的标准方程为:.......10分

 

查看答案和解析>>

4. m>2或m<-2 解析:因为f(x)=在(-1,1)内有零点,所以f(-1)f(1)<0,即(2+m)(2-m)<0,则m>2或m<-2

随机变量的所有等可能取值为1,2…,n,若,则(    )

A. n=3        B.n=4          C. n=5        D.不能确定

5.m=-3,n=2 解析:因为的两零点分别是1与2,所以,即,解得

6.解析:因为只有一个零点,所以方程只有一个根,因此,所以

查看答案和解析>>

如图,长方体中,底面是正方形,的中点,是棱上任意一点。

(Ⅰ)证明: ;

(Ⅱ)如果=2 ,=,, 求 的长。

 【解析】(Ⅰ)因底面是正方形,故,又侧棱垂直底面,可得,而,所以,因,所以,又,所以 ;

(Ⅱ)因=2 ,=,,可得,,设,由,即,解得,即 的长为

 

查看答案和解析>>

下列说法正确的是

A.由y=2x解得x=,所以函数y=2x的反函数是x=

B.由y=2x解得x=,然后在x=中将xy交换,得到y=,则函数y=不是y=2x的反函数

C.有些函数没有反函数

D.因为x=y=都可以称为y=2x的反函数,所以在同一坐标系中函数x=y=的图象表示同一条直线

查看答案和解析>>

如图,已知直线)与抛物线和圆都相切,的焦点.

(Ⅰ)求的值;

(Ⅱ)设上的一动点,以为切点作抛物线的切线,直线轴于点,以为邻边作平行四边形,证明:点在一条定直线上;

(Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,    直线轴交点为,连接交抛物线两点,求△的面积的取值范围.

【解析】第一问中利用圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以

第二问中,由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形

因为是定点,所以点在定直线

第三问中,设直线,代入结合韦达定理得到。

解:(Ⅰ)由已知,圆的圆心为,半径.由题设圆心到直线的距离.  

,解得舍去).     …………………(2分)

与抛物线的相切点为,又,得.     

代入直线方程得:,∴    所以.      ……(2分)

(Ⅱ)由(Ⅰ)知抛物线方程为,焦点.   ………………(2分)

,由(Ⅰ)知以为切点的切线的方程为.   

,得切线轴的点坐标为    所以,    ∵四边形FAMB是以FA、FB为邻边作平行四边形,

因为是定点,所以点在定直线上.…(2分)

(Ⅲ)设直线,代入,  ……)得,                 ……………………………     (2分)

的面积范围是

 

查看答案和解析>>

 

一、选择题

1. D

解析:∵a3+a7+a11=3a7为常数,

∴S13==13a7,也是常数.

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A

4.D  数列是以2为首项,以为公比的等比数列,项数为故选D。

5.B

6. D

解析:当q=1时,Sn,Sn+1,Sn+2构成等差数列;

当q=-2时,Sn+1,Sn,Sn+2构成等差数列;

当q=-时,Sn,Sn+2,Sn+1构成等差数列.

7.A   仅②不需要分情况讨论,即不需要用条件语句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依题意可得.

11.B,指输入的数据.

12.D 

(法一)辗转相除法:         

的最大公约数.

(法二)更相减损术:

        

        ∴的最大公约数.

二、填空题

13.

14.

时,是正整数。

15.

解析:bn===a1,bn+1=a1,=(常数).

16.-6

三、解答题

17.解(1)

     

      以3为公比的等比数列.

 (2)由(1)知,..

      不适合上式,

       .

18.解:(1)an=    (2).

19.解:(1)

(2)由(1)得,假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则

,得

∴p=r,矛盾.  ∴数列{bn}中任意三项都不可能成等比数列.

20.解:设未赠礼品时的销售量为a0个,而赠送礼品价值n元时销售量为an个,

又设销售利润为数列

考察的单调性,

当n=9或10时,最大

答:礼品价值为9元或10元时商品获得最大利润.

 

21.解析:(1)时,

两式相减:

故有

数列为首项公比的等比数列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=

(3),d100=2+3×49=149,∴d1, d2,…d50是首项为149,公差为-3的等差数列.  

当n≤50时,

当51≤n≤100时,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴综上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步练习册答案