解析:C .点评记错公式.运算马虎.或是试图求出该数列的首项.是本题出错的主因.本题是求一个比值.因此不不要把数列的首项求出来.从整体上把它约掉即可.这也是解决“比值 类题目的重要思路之一.考点二:等差数列.等比数列的综合问题 查看更多

 

题目列表(包括答案和解析)

精英家教网如图,在等腰梯形OABC中,A(2,2),B(5,2).直线x=t(t>0)由点O向点C移动,至点C完毕,记扫描梯形时所得直线x=t左侧的图形面积为f(t).试求f(t)的解析式,并画出y=f(t)的图象.

查看答案和解析>>

精英家教网已知函数f(x)=ax2+bx+c,x∈[0,6]的图象经过(0,0)和(6,0)两点,如图所示,且函数f(x)的值域为[0,9].过动点P(t,f(t))作x轴的垂线,垂足为A,连接OP.
(I)求函数f(x)的解析式;
(Ⅱ)记△OAP的面积为S,求S的最大值.

查看答案和解析>>

精英家教网某中学将100名高一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师分别从两个班级中各随机抽取20名学生的成绩进行统计,作出茎叶图如下.记成绩不低于90分者为“成绩优秀”.
(Ⅰ)在乙班样本的20个个体中,从不低于86分的成绩中随机抽取2个,求抽出的两个均“成绩优秀”的概率;
(Ⅱ)由以上统计数据填写下面列联表,并判断是否有90%的把握认为:“成绩优秀”与教学方式有关.
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(此公式也可写成x2=
n(n11 n22-n12n21)2
n1+ n2+n+1n+2

P(k2≥K) 0.25 0.15 0.10 0.05 0.025
k 1.323 2.072 2.706 3.841 5.024

查看答案和解析>>

某中学将100名髙一新生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A、B两种不同的教学方式分别在甲、乙两个班级进行教改实验.为了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如图).记成绩不低于90分者为“成绩优秀”.
精英家教网
(Ⅰ)从乙班随机抽取2名学生的成绩,记“成绩优秀”的个数为ξ,求ξ的分布列和数学期望;
(Ⅱ)根据频率分布直方图填写下面2×2列联表,并判断是否有95%的把握认为:“成绩优秀”与教学方式有关.
甲班(A方式) 乙班(B方式) 总计
成绩优秀
成绩不优秀
总计
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
(此公式也可写成x2=
n(n11n22-n12n21)2
n1+n2+n+1n+2

精英家教网

查看答案和解析>>

已知函数f(x)=
x
a
+
a-1
x
(a≠0且a≠1).
(Ⅰ)试就实数a的不同取值,写出该函数的单调递增区间;
(Ⅱ)已知当x>0时,函数在(0,
6
)
上单调递减,在(
6
,+∞)
上单调递增,求a的值并写出函数F(x)=
3
f(x)
的解析式;
(Ⅲ)记(Ⅱ)中的函数F(x)=
3
f(x)
的图象为曲线C,试问是否存在经过原点的直线l,使得l为曲线C的对称轴?若存在,求出l的方程;若不存在,请说明理由.

查看答案和解析>>

 

一、选择题

1. D

解析:∵a3+a7+a11=3a7为常数,

∴S13==13a7,也是常数.

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A

4.D  数列是以2为首项,以为公比的等比数列,项数为故选D。

5.B

6. D

解析:当q=1时,Sn,Sn+1,Sn+2构成等差数列;

当q=-2时,Sn+1,Sn,Sn+2构成等差数列;

当q=-时,Sn,Sn+2,Sn+1构成等差数列.

7.A   仅②不需要分情况讨论,即不需要用条件语句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依题意可得.

11.B,指输入的数据.

12.D 

(法一)辗转相除法:         

的最大公约数.

(法二)更相减损术:

        

        ∴的最大公约数.

二、填空题

13.

14.

时,是正整数。

15.

解析:bn===a1,bn+1=a1,=(常数).

16.-6

三、解答题

17.解(1)

     

      以3为公比的等比数列.

 (2)由(1)知,..

      不适合上式,

       .

18.解:(1)an=    (2).

19.解:(1)

(2)由(1)得,假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则

,得

∴p=r,矛盾.  ∴数列{bn}中任意三项都不可能成等比数列.

20.解:设未赠礼品时的销售量为a0个,而赠送礼品价值n元时销售量为an个,

又设销售利润为数列

考察的单调性,

当n=9或10时,最大

答:礼品价值为9元或10元时商品获得最大利润.

 

21.解析:(1)时,

两式相减:

故有

数列为首项公比的等比数列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=

(3),d100=2+3×49=149,∴d1, d2,…d50是首项为149,公差为-3的等差数列.  

当n≤50时,

当51≤n≤100时,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴综上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步练习册答案