分析:本题主要考查等差数列.等比数列.对数等基础知识和综合运用数学知识解决问题的能力.第一问考查的是“两个等比数列的商还是等比数列 .这和教材中的一些问题很接近.考生解决困难不大,第二问首先考查的是“正项等比数列取对数后得到的是等差数列 .其次着重考查的是“对任意正整数恒成立.可以归结为一个关于正整数的恒等式.用多项式恒等定理得到一个关于基本量的方程组.解这个方程组确定基本量 .这可以说是本题考查的“重心 .最后一个等比数列求和是一个很容易的问题.这个试题突出的是解决两类基本数列问题的基本量方法. 查看更多

 

题目列表(包括答案和解析)

某市投资甲、乙两个工厂,2011年两工厂的产量均为100万吨,在今后的若干年内,甲工厂的年产量每年比上一年增加10万吨,乙工厂第年比上一年增加万吨,记2011年为第一年,甲、乙两工厂第年的年产量分别为万吨和万吨.

(Ⅰ)求数列的通项公式;

(Ⅱ)若某工厂年产量超过另一工厂年产量的2倍,则将另一工厂兼并,问到哪一年底,其中哪一个工厂被另一个工厂兼并.

【解析】本试题主要考查数列的通项公式的运用。

第一问由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98

第二问,考查等差数列与等比数列的综合,考查用数列解决实际问题,其步骤是建立数列模型,进行计算得出结果,再反馈到实际中去解决问题.由于比较两个工厂的产量时两个函数的形式较特殊,不易求解,故采取了列举法,数据列举时作表格比较简捷.

解:(Ⅰ)由题得an=10n+90,bn=100+2+22+23+…+2n-1=100+2(1-2n-1)/ 1-2 =2n+98……6分

(Ⅱ)由于n,各年的产量如下表 

n       1     2    3      4     5     6     7     8    

an      100   110   120   130   140   150  160   170

bn      100   102    106  114   130   162   226   354

2015年底甲工厂将被乙工厂兼并

 

查看答案和解析>>

下表给出一个“等差数阵”:

4

7

( )

( )

( )

……

a1j

……

4

12

( )

( )

( )

……

a2j

……

( )

( )

( )

( )

( )

……

a3j

……

( )

( )

( )

( )

( )

……

a4j

……

……

……

……

……

……

……

……

……

ai1

ai2

ai3

ai4

ai5

……

aij

……

……

……

……

……

……

……

……

……

其中每行、每列都是等差数列,aij表示位于第i行第j列的数.

1)写出a45的值;

2)写出aij的计算公式;

3)写出2008这个数在等差数阵中所在的一个位置;

4)证明:正整数N在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.本小题主要考查等差数列、充要条件等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.

 

查看答案和解析>>

下表给出一个“等差数阵”:

4

7

( )

( )

( )

……

a1j

……

4

12

( )

( )

( )

……

a2j

……

( )

( )

( )

( )

( )

……

a3j

……

( )

( )

( )

( )

( )

……

a4j

……

……

……

……

……

……

……

……

……

ai1

ai2

ai3

ai4

ai5

……

aij

……

……

……

……

……

……

……

……

……

其中每行、每列都是等差数列,aij表示位于第i行第j列的数.

1)写出a45的值;

2)写出aij的计算公式;

3)写出2008这个数在等差数阵中所在的一个位置;

4)证明:正整数N在该等差数阵中的充要条件是2N+1可以分解成两个不是1的正整数之积.本小题主要考查等差数列、充要条件等基本知识,考查逻辑思维能力、分析问题和解决问题的能力.

 

查看答案和解析>>

 

一、选择题

1. D

解析:∵a3+a7+a11=3a7为常数,

∴S13==13a7,也是常数.

2. C

解析:∵易知q≠1,S6∶S3=1∶2=,q3=-,

∴S9∶S3==1+q3+q6=1-+(-)2=.

3.A

4.D  数列是以2为首项,以为公比的等比数列,项数为故选D。

5.B

6. D

解析:当q=1时,Sn,Sn+1,Sn+2构成等差数列;

当q=-2时,Sn+1,Sn,Sn+2构成等差数列;

当q=-时,Sn,Sn+2,Sn+1构成等差数列.

7.A   仅②不需要分情况讨论,即不需要用条件语句

 

8. D

9. D

解析:易知an=

∴a13+a23+…+an3=23+81+82+…+8n-1=8+=(8n-1+6).

10.A提示:依题意可得.

11.B,指输入的数据.

12.D 

(法一)辗转相除法:         

的最大公约数.

(法二)更相减损术:

        

        ∴的最大公约数.

二、填空题

13.

14.

时,是正整数。

15.

解析:bn===a1,bn+1=a1,=(常数).

16.-6

三、解答题

17.解(1)

     

      以3为公比的等比数列.

 (2)由(1)知,..

      不适合上式,

       .

18.解:(1)an=    (2).

19.解:(1)

(2)由(1)得,假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列,则

,得

∴p=r,矛盾.  ∴数列{bn}中任意三项都不可能成等比数列.

20.解:设未赠礼品时的销售量为a0个,而赠送礼品价值n元时销售量为an个,

又设销售利润为数列

考察的单调性,

当n=9或10时,最大

答:礼品价值为9元或10元时商品获得最大利润.

 

21.解析:(1)时,

两式相减:

故有

数列为首项公比的等比数列。

(2)

(3)

   ①

   ②

①-②得:

22.解:(1)b4=b1+3d  即11=2+3d, ∴b1=2, b2=5, b3=8, b4=11, b5=8, b6=5, b7=2;

(2)S=C1+C2+…+C49=2(C25+C26+…+C49)-C25=

(3),d100=2+3×49=149,∴d1, d2,…d50是首项为149,公差为-3的等差数列.  

当n≤50时,

当51≤n≤100时,Sn=d1+d2+…d50=S50+(d51+d52+…dn)

                   =3775+(n-50)×2+=

∴综上所述,.

w.w.w.k.s.5.u.c.o.m

 

 


同步练习册答案