分析:⑴求出复数的实虚部.利用复数的虚部为零.实部大于零求解即可,⑵将和都写成的形式.利用复数相等列方程组求解. 查看更多

 

题目列表(包括答案和解析)

当实数取何值时,复数(其中是虚数单位).

(1)是实数;(2)是纯虚数;(3)等于零.

【解析】(1)根据实数的等价条件:复数的虚部为零,列出方程求出m的值;

(2)根据纯虚数的等价条件:复数的虚部不为零、实部为零,列出方程求出m的值;

(3)根据实部和虚部都为零,列出方程求出m的值.

 

查看答案和解析>>

已知关于x的方程(1-a)x2+(a+2)x-4=0,a∈R,求:?

(1)方程有两个正根的充要条件;

(2)方程至少有一个正根的充要条件.?

思路分析:先求出方程有两个实根的充要条件,再讨论x2的系数及运用根与系数的关系分别求出要求的充要条件.

查看答案和解析>>

已知椭圆
x2
4
+
y2
3
=1.
(1)是否有这样的实数值m,使得此椭圆上存在两点关于直线y=2x+m对称?如果存在,求出m的值或取值范围;如果没有,试说明理由.
(2)若直线为y=kx+m,能使得此椭圆上存在两点关于直线y=kx+m对称的m的值的集合为M,要使M⊆(-
1
3
1
3
),求k的取值范围.

查看答案和解析>>

已知函数y=f(x),x∈R满足f(x+1)=af(x),a是不为0的实常数.
(1)若当0≤x≤1时,f(x)=x(1-x),求函数y=f(x),x∈[0,1]的值域;
(2)在(1)的条件下,求函数y=f(x),x∈[n,n+1),n∈N的解析式;
(3)若当0<x≤1时,f(x)=3x,试研究函数y=f(x)在区间(0,+∞)上是否可能是单调函数?
若可能,求出a的取值范围;若不可能,请说明理由.

查看答案和解析>>

已知函数f(x)=2lnx,g(x)=
1
2
ax2+3x.
(1)设直线x=1与曲线y=f(x)和y=g(x)分别相交于点P、Q,且曲线y=f(x)和y=g(x)在点P、Q处的切线平行,若方程
1
2
f(x2+1)+g(x)=3x+k有四个不同的实根,求实数k的取值范围;
(2)设函数F(x)满足F(x)+x[f′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分别是函数f(x)与g(x)的导函数;试问是否存在实数a,使得当x∈(0,1]时,F(x)取得最大值,若存在,求出a的取值范围;若不存在,说明理由.

查看答案和解析>>

一、选择题:

1.C.提示:

2.A.提示:直接利用“更相减损术”原理逐步运算即可.

3.B.提示:为实数,所以

4.C.提示:这是一个条件分支结构,实质是分段函数求最值问题,将函数定义域分为三段讨论即可求解.分段函数为:

时,解得,不合题意;当时,解得,不合题意;

时,解得,符合题意,所以当输入的值为3时,输出的值为8.

5.B.提示:由为纯虚数得:.由,解得:.因为为第四象限角,所以,则,选B.

6.C.提示:此算法的功能为求解取到第一个大于或等于的值时,的表达式中最后一项的值.

.所以时,

此时

7.C.提示:令,则,∴

8.D.提示:框图的功能是寻找满足的最小的自然数,可解得,

所以,则输出的值为

9.D.提示:,此复数的对应点为,因为,所以,所以此复数的对应点在第四象限.

10.B.提示:设工序c所需工时数为x天,由题设关键路线是aceg.需工时1+x+4+1=10.∴x=4,即工序c所需工时数为4天.

11.A.提示:……,所以

12.A.提示:根据题意可得:,解得.所以点落在以为端点的线段上,如右图.表示线段上的点到的距离之和,显然当共线时,和最小,此时,点是直线的交点,由图知,交点为,所以

,当时,

二、填空题

13..提示:这是一个当型循环结构,由条件可知判断的条件是:;处理框所填的是:

14.21分钟.提示:根据流程,可以先烧水,泡面,在烧水泡面的11分钟里,可以同时洗脸刷牙和上网查资料,这样最短可用去11分钟,然后吃饭用10分钟,这样他做完这些事情用的最短时间为21分钟.

15..提示:设方程的实根为,代入方程得,可化为,所以有,解得

所以,所以其共轭复数为

16.4.提示:从图中可以看出,一件成品必须经过的工序次数是粗加工、检验、精加工或返修加工、检验,至少四次.

三、解答题:

17.解:由题知平行四边形三顶点坐标为

设D点的坐标为

因为,得

,即

所以,则对应的复数为

⑵因为,所以复数的对应点Z在以为圆心,以2为半径的圆上,

的最大值为

18.解:

19.解:因为

所以,若,则

消去可得:

可化为,则当时,取最小值;当时,取最大值7.

所以

20.解:此程序的功能是求解函数的函数值.

根据题意知

则当时,;当时,

所以,可以化为

时,时,有最小值;当时,则时,有最小值

因为,所以所得值中的最小值为1.

21.解:

所以.因为,所以

所以,则,即的模的取值范围为

22.解:(1)算法的功能为:

(2)程序框图为:

⑶程序语句为:

   

       

   

   

w.w.w.k.s.5.u.c.o.m

 


同步练习册答案