⑵几何意义:复数可用点或用表示. 查看更多

 

题目列表(包括答案和解析)

两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,得数列{an},则an-an-1=
3n-2(n≥2)
3n-2(n≥2)

查看答案和解析>>

传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过1,3,6,10,…,可以用如图的三角形点阵表示,那么第10个点阵表示的数是
 

精英家教网

查看答案和解析>>

(2012•湖北)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上面画点或用小石子表示数.他们研究过如图所示的三角形数:
将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:
(Ⅰ)b2012是数列{an}中的第
5030
5030
项;
(Ⅱ)b2k-1=
5k(5k-1)
2
5k(5k-1)
2
.(用k表示)

查看答案和解析>>

传说古希腊毕达哥拉斯学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们将石子摆成如图所示的三角形状,就将其所对应石子个数称为三角形数,则第10三角形数是
55
55

查看答案和解析>>

两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图中的实心点个数1,5,12,22,…,被称为五角形数,其中第1个五角形数记作a1=1,第2个五角形数记作a2=5,第3个五角形数记作a3=12,第4个五角形数记作a4=22,…,若按此规律继续下去,若an=145,则n=
10
10

查看答案和解析>>

一、选择题:

1.C.提示:

2.A.提示:直接利用“更相减损术”原理逐步运算即可.

3.B.提示:为实数,所以

4.C.提示:这是一个条件分支结构,实质是分段函数求最值问题,将函数定义域分为三段讨论即可求解.分段函数为:

时,解得,不合题意;当时,解得,不合题意;

时,解得,符合题意,所以当输入的值为3时,输出的值为8.

5.B.提示:由为纯虚数得:.由,解得:.因为为第四象限角,所以,则,选B.

6.C.提示:此算法的功能为求解取到第一个大于或等于的值时,的表达式中最后一项的值.

.所以时,

此时

7.C.提示:令,则,∴

8.D.提示:框图的功能是寻找满足的最小的自然数,可解得,

所以,则输出的值为

9.D.提示:,此复数的对应点为,因为,所以,所以此复数的对应点在第四象限.

10.B.提示:设工序c所需工时数为x天,由题设关键路线是aceg.需工时1+x+4+1=10.∴x=4,即工序c所需工时数为4天.

11.A.提示:……,所以

12.A.提示:根据题意可得:,解得.所以点落在以为端点的线段上,如右图.表示线段上的点到的距离之和,显然当共线时,和最小,此时,点是直线的交点,由图知,交点为,所以

,当时,

二、填空题

13..提示:这是一个当型循环结构,由条件可知判断的条件是:;处理框所填的是:

14.21分钟.提示:根据流程,可以先烧水,泡面,在烧水泡面的11分钟里,可以同时洗脸刷牙和上网查资料,这样最短可用去11分钟,然后吃饭用10分钟,这样他做完这些事情用的最短时间为21分钟.

15..提示:设方程的实根为,代入方程得,可化为,所以有,解得

所以,所以其共轭复数为

16.4.提示:从图中可以看出,一件成品必须经过的工序次数是粗加工、检验、精加工或返修加工、检验,至少四次.

三、解答题:

17.解:由题知平行四边形三顶点坐标为

设D点的坐标为

因为,得

,即

所以,则对应的复数为

⑵因为,所以复数的对应点Z在以为圆心,以2为半径的圆上,

的最大值为

18.解:

19.解:因为

所以,若,则

消去可得:

可化为,则当时,取最小值;当时,取最大值7.

所以

20.解:此程序的功能是求解函数的函数值.

根据题意知

则当时,;当时,

所以,可以化为

时,时,有最小值;当时,则时,有最小值

因为,所以所得值中的最小值为1.

21.解:

所以.因为,所以

所以,则,即的模的取值范围为

22.解:(1)算法的功能为:

(2)程序框图为:

⑶程序语句为:

   

       

   

   

w.w.w.k.s.5.u.c.o.m

 


同步练习册答案