根据三角函数定义知:.评注:注意熟练记忆复数的模的公式.注意复数与三角的结合问题的求解.易错指导:复数的模常常和点.向量相结合考查.注意交汇知识的正确应用.注意向量的两种几何表示:⑴点表示:弄清各象限点的坐标的符号,⑵向量表示:注意复数与平面向量交汇.弄清平面向量的基本运算法则.以上是对本专题重点内容的分.希望同学们针对以上几方面.复习时抓住重点.提高解题准确性.提升解决问题的能力.减少失误的发生.四.规律总结 查看更多

 

题目列表(包括答案和解析)

是角终边上不同与原点O的一点,根据三角函数定义,求角的正弦、余弦、正切三角函数值.

 

查看答案和解析>>

若定义在D上的函数y=f(x)满足条件:存在实数a,b(a<b)且[a,b]?D,使得:
①任取x0∈[a,b],有f(x0)=C(C是常数);
②对于D内任意y0,当y0∉[a,b],总有f(y0)<C.
我们将满足上述两条件的函数f(x)称为“平顶型”函数,称C为“平顶高度”,称b-a为“平顶宽度”.根据上述定义,解决下列问题:
(1)函数f(x)=-|x+2|-|x-3|是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由.
(2)已知f(x)=mx-
x2+2x+n
,x∈[-2,+∞)
是“平顶型”函数,求出m,n的值.
(3)对于(2)中的函数f(x),若f(x)=kx在x∈[-2,+∞)上有两个不相等的根,求实数k的取值范围.

查看答案和解析>>

精英家教网给出下列四个命题:
①已知函数y=2sin(x+φ)(0<φ<π)的图象如图所示,则?=
π
6
5
6
π

②已知O、A、B、C是平面内不同的四点,且
OA
OB
OC
,则α+β=1是A、B、C三点共线的充要条件;
③若数列an恒满足
a
2
n+1
a
2
n
=p
(p为正常数,n∈N*),则称数列an是“等方比数列”.根据此定义可以断定:若数列an是“等方比数列”,则它一定是等比数列;
④求解关于变量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到该方程中变量n的所有取值的表达式为n=
1
12
(4k+8)

(k∈N*).
其中正确命题的序号是
 

查看答案和解析>>

根据任意角的三角函数定义,将正弦、余弦、正切函数在弧度制下的值在各象限的符号(用“+”或“-”)填入括号(填错任何一个将不给分).

查看答案和解析>>

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.
举例:f(x)=x,D=[-3,2],则对任意x∈D,|f(x)|≤3,根据上述定义,f(x)=x在[-3,2]上为有界函数,上界可取3,5等等.
已知函数f(x)=1+a•2x+4x,g(x)=
1-2x1+2x

(1)当a=1时,求函数f(x)在(0,+∞)上的值域,并判断函数f(x)在(0,+∞)上是否为有界函数,请说明理由;
(2)求函数g(x)在[0,1]上的上界T的取值范围;
(3)若函数f(x)在(-∞,0]上是以3为上界的函数,求实数a的取值范围.

查看答案和解析>>

一、选择题:

1.C.提示:

2.A.提示:直接利用“更相减损术”原理逐步运算即可.

3.B.提示:为实数,所以

4.C.提示:这是一个条件分支结构,实质是分段函数求最值问题,将函数定义域分为三段讨论即可求解.分段函数为:

时,解得,不合题意;当时,解得,不合题意;

时,解得,符合题意,所以当输入的值为3时,输出的值为8.

5.B.提示:由为纯虚数得:.由,解得:.因为为第四象限角,所以,则,选B.

6.C.提示:此算法的功能为求解取到第一个大于或等于的值时,的表达式中最后一项的值.

.所以时,

此时

7.C.提示:令,则,∴

8.D.提示:框图的功能是寻找满足的最小的自然数,可解得,

所以,则输出的值为

9.D.提示:,此复数的对应点为,因为,所以,所以此复数的对应点在第四象限.

10.B.提示:设工序c所需工时数为x天,由题设关键路线是aceg.需工时1+x+4+1=10.∴x=4,即工序c所需工时数为4天.

11.A.提示:……,所以

12.A.提示:根据题意可得:,解得.所以点落在以为端点的线段上,如右图.表示线段上的点到的距离之和,显然当共线时,和最小,此时,点是直线的交点,由图知,交点为,所以

,当时,

二、填空题

13..提示:这是一个当型循环结构,由条件可知判断的条件是:;处理框所填的是:

14.21分钟.提示:根据流程,可以先烧水,泡面,在烧水泡面的11分钟里,可以同时洗脸刷牙和上网查资料,这样最短可用去11分钟,然后吃饭用10分钟,这样他做完这些事情用的最短时间为21分钟.

15..提示:设方程的实根为,代入方程得,可化为,所以有,解得

所以,所以其共轭复数为

16.4.提示:从图中可以看出,一件成品必须经过的工序次数是粗加工、检验、精加工或返修加工、检验,至少四次.

三、解答题:

17.解:由题知平行四边形三顶点坐标为

设D点的坐标为

因为,得

,即

所以,则对应的复数为

⑵因为,所以复数的对应点Z在以为圆心,以2为半径的圆上,

的最大值为

18.解:

19.解:因为

所以,若,则

消去可得:

可化为,则当时,取最小值;当时,取最大值7.

所以

20.解:此程序的功能是求解函数的函数值.

根据题意知

则当时,;当时,

所以,可以化为

时,时,有最小值;当时,则时,有最小值

因为,所以所得值中的最小值为1.

21.解:

所以.因为,所以

所以,则,即的模的取值范围为

22.解:(1)算法的功能为:

(2)程序框图为:

⑶程序语句为:

   

       

   

   

w.w.w.k.s.5.u.c.o.m

 


同步练习册答案