解法二:取AC中点O.连结OS.OB.∵SA=SC.AB=BC.∴AC⊥SO且AC⊥BO.∵平面SAC⊥平面ABC.平面SAC∩平面ABC=AC ∴SO⊥面ABC.∴SO⊥BO.如图所示建立空间直角坐标系O-xyz.则A. 查看更多

 

题目列表(包括答案和解析)

16、设每年南充市第二次模拟考试成绩大体上能反映当年全市考生高考的成绩状况,设某一年二模考试理科成绩服从正态分布ξ~N(480,1002),若往年全市一本院校录取率为40%,那么一本录取分数线可能划在(已知Φ(0.25)=0.6)
505
分.

查看答案和解析>>

(2010•青浦区二模)[理科]已知一圆锥的底面直径、高和一圆柱的底面直径均相等,且圆锥和圆柱的体积也相等,那么,圆锥的全面积与圆柱的全面积之比为
3+3
5
10
3+3
5
10

查看答案和解析>>

(2010•青浦区二模)[理科]观察下列式子:1+
1
22
3
2
1+
1
22
+
1
32
5
3
1+
1
22
+
1
32
+
1
42
7
4
,…,可以猜想结论为(  )

查看答案和解析>>

(2010•青浦区二模)[理科]定义:如果数列{an}的任意连续三项均能构成一个三角形的三边长,则称{an}为“三角形”数列.对于“三角形”数列{an},如果函数y=f(x)使得bn=f(an)仍为一个“三角形”数列,则称y=f(x)是数列{an}的“保三角形函数”,(n∈N*).
(1)已知{an}是首项为2,公差为1的等差数列,若f(x)=kx,(k>1)是数列{an}的“保三角形函数”,求k的取值范围;
(2)已知数列{cn}的首项为2010,Sn是数列{cn}的前n项和,且满足4Sn+1-3Sn=8040,证明{cn}是“三角形”数列;
(3)根据“保三角形函数”的定义,对函数h(x)=-x2+2x,x∈[1,A],和数列1,1+d,1+2d(d>0)提出一个正确的命题,并说明理由.

查看答案和解析>>

已知数列满足(I)求数列的通项公式;

(II)若数列,前项和为,且证明:

【解析】第一问中,利用

∴数列{}是以首项a1+1,公比为2的等比数列,即 

第二问中, 

进一步得到得    即

是等差数列.

然后结合公式求解。

解:(I)  解法二、

∴数列{}是以首项a1+1,公比为2的等比数列,即 

(II)     ………②

由②可得: …………③

③-②,得    即 …………④

又由④可得 …………⑤

⑤-④得

是等差数列.

     

 

查看答案和解析>>


同步练习册答案