第16题图第15题图 查看更多

 

题目列表(包括答案和解析)

(本题10分)某校在参加ZSBL“动感地带”浙江省第四届中学生篮球联赛竞赛前,欲再从甲、乙两人中挑选一人参赛,已知赛前甲最近参加的十场比赛得分如下茎叶图所示,赛前乙最近参加的十场比赛得分分别为20、15、12、29、14、16、17、22、25、30,

请回答:

  (1)甲近十场比赛得分的极差、众数、中位数分别是多少?

  (2)甲近十场比赛得分在间的频率是多少?

  (3)应选派谁参加更合理?

查看答案和解析>>

(本小题满分12分)

第8届中学生模拟联合国大会将在本校举行,为了搞好接待工作,组委会招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm):

                       男             女

                               15    7  7  8  9  9  9

9  8   16    0  0  1  2  4  5  8  9

8  6  5  0   17    2  5  6

7  4  2  1   18    0 

1  0   19

若男生身高在180cm以上(包括180cm)定义为“高个子”, 在180cm以下(不包括180cm)定义为“非高个子”, 女生身高在170cm以上(包括170cm)定义为“高个子”,在170cm以下(不包括170cm)定义为“非高个子”.

(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取6人,则应分别抽取“高个子”、“非高个子”各几人?

(2)从(1)中抽出的6人中选2人担任领座员,那么至少有一人是“高个子”的概率是多少?

 

查看答案和解析>>

(本小题满分12分)
第8届中学生模拟联合国大会将在本校举行,为了搞好接待工作,组委会招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm):
                       男             女
                               15    7  7  8  9  9  9
9  8   16    0  0  1  2  4  5  8  9
8  6  5  0   17    2  5  6
7  4  2  1   18    0 
1  0   19
若男生身高在180cm以上(包括180cm)定义为“高个子”, 在180cm以下(不包括180cm)定义为“非高个子”, 女生身高在170cm以上(包括170cm)定义为“高个子”,在170cm以下(不包括170cm)定义为“非高个子”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取6人,则应分别抽取“高个子”、“非高个子”各几人?
(2)从(1)中抽出的6人中选2人担任领座员,那么至少有一人是“高个子”的概率是多少?

查看答案和解析>>

(本小题满分12分)
第8届中学生模拟联合国大会将在本校举行,为了搞好接待工作,组委会招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如下茎叶图(单位:cm):
                       男             女
                               15    7  7  8  9  9  9
9  8   16    0  0  1  2  4  5  8  9
8  6  5  0   17    2  5  6
7  4  2  1   18    0 
1  0   19
若男生身高在180cm以上(包括180cm)定义为“高个子”, 在180cm以下(不包括180cm)定义为“非高个子”, 女生身高在170cm以上(包括170cm)定义为“高个子”,在170cm以下(不包括170cm)定义为“非高个子”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中抽取6人,则应分别抽取“高个子”、“非高个子”各几人?
(2)从(1)中抽出的6人中选2人担任领座员,那么至少有一人是“高个子”的概率是多少?

查看答案和解析>>

. 为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第2小组的频数为12,则报考飞行员的学生人数是     

第15题图                               第16题图

 

查看答案和解析>>

一、选择题

题号

1

2

3

4

5

6

7

8

9

10

11

12

答案

D

C

C

A

A

D

C

B

A

D

B

B

二、填空题

13.   14.     15.7500    16.

三、解答题

17.证明:(Ⅰ)取AB的中点M,连FM,MC, ┅┅┅┅2分

∵ F、M分别是AE、BA的中点  

∴ FM∥EB, FM=EB=CD, ┅┅┅┅┅┅┅4分

∵ EB、CD都垂直于平面ABC 

∴ CD∥BE∴ CD∥FM,

∴四边形FMCD是平行四边形,

∴ FD∥MC.又∵

∴FD∥平面ABC                 ┅┅┅┅┅┅┅6分          

(Ⅱ)∵M是AB的中点,CA=CB,

∴CM⊥AB, ┅┅┅┅┅┅┅8分

又  CM⊥BE, ∴CM⊥面EAB, ∴CM⊥BF, ∴FD⊥BF, ┅┅┅┅┅┅┅10分

∵F是AE的中点, EB=AB∴BF⊥EA. ∴BF⊥平面ADE      ┅┅┅┅┅┅┅12分

 

18解:

(Ⅰ)实数对

共16种不同的情况,有16条不同的直线.┅┅┅┅┅┅┅4分

当实数对时,直线的斜率,直线倾斜角大于

所以直线倾斜角大于的概率为;┅┅┅┅┅┅┅6分

(Ⅱ)直线在x轴上的截距与在y轴上截距之差,即,┅┅┅┅┅┅┅8分

当实数对,┅┅┅┅┅┅┅10分

所以直线在x轴上的截距与在y轴上截距之差小于7的概率为. ┅┅┅┅12分

 

19解:(1)

┅┅┅┅┅┅┅4分

因为,所以,所以

的取值范围为 ┅┅┅┅┅┅┅6分

(Ⅱ)因为,所以 ┅┅┅┅┅┅┅8分

所以的最小值为,当为等边三角形时取到. ┅┅┅┅┅┅┅12分

20解:(Ⅰ)的首项为,所以 ┅┅┅┅┅┅┅3分

所以,所以是等差数列,首项为,公差为1

┅┅┅┅┅┅┅6分

(Ⅱ)由(Ⅰ)可得,即 ┅┅┅┅┅┅┅7分

  ①

  ②┅┅┅┅┅┅9分

①-②可得

所以,所以┅┅12分

21解:(Ⅰ)由题意可知,可行域是以及点为顶点的三角形,∵,∴为直角三角形,                 ┅┅┅┅┅┅┅2分

∴外接圆C以原点O为圆心,线段A1A2为直径,故其方程为

2a=4,∴a=2.又,可得

∴所求圆C与椭圆C1的方程分别是. ┅┅┅┅┅┅┅4分

(Ⅱ2) F,设,,

时,Q点为(),可得,∴PFOQ.

时,,可以解得,也有PFOQ.  ┅┅┅6分

时,OP的斜率为,则切线PQ的斜率为,则PQ的方程为:化简为:,          ┅┅┅8分

交得Q点坐标为             ┅┅┅10分

∴PFOQ.

综上,直线PF与直线OQ垂直.                       ┅┅┅12分

22解:(Ⅰ) ┅┅┅┅┅┅┅2分

①当,即,在R上有,所以在R单调递增;┅┅┅┅┅┅┅4分

②当,即,当时,在上有,所以在R单调递增;当时,在上有,所以在R单调递增;┅┅┅┅┅┅┅6分

③当,即

两个根分别为,所以在上有,即单调递增;

上有,即单调递减.┅┅┅┅┅┅┅8分

(Ⅱ)由(Ⅰ)可知当时函数有极值,

时,,所以不符合题意.

时,,此时函数的极值点都为正数

┅┅┅┅┅┅┅10分

有极大值,极小值,所以

又因为

所以

=,┅┅┅┅┅┅┅12分

,则,所以单调递增,所以,即极值之和小于. ┅┅┅┅┅┅┅14分

 

 

 

 

 

 


同步练习册答案