C 取AC的中点O.则 四面体ABCD外接球的球心为O.半径为 查看更多

 

题目列表(包括答案和解析)

如图,在三棱锥中,是正三角形,D的中点,二面角为120,.取AC的中点O为坐标原点建立空间直角坐标系,如图所示,BDz轴于点E.

(I)求BDP三点的坐标;

(II)求异面直线ABPC所成的角;

查看答案和解析>>

已知正方体ABCD-A1B1C1D1

  O是底面ABCD对角线的交点.

(1)求证:A1C⊥平面AB1D1

(2)求.

【解析】(1)证明线面垂直,需要证明直线垂直这个平面内的两条相交直线,本题只需证:即可.

(2)可以利用向量法,也可以根据平面A1ACC1与平面AB1D1垂直,可知取B1D1的中点E,则就是直线AC与平面AB1D1所成的角.然后解三角形即可.

 

查看答案和解析>>

如图,在正方体ABCD—A1B1C1D1中,M是棱DD1的中点,O是底面ABCD的中心,P是棱A1B1上任意一点,则直线OP与直线AM所成角的大小等于(    )

A.45°                  B.90°                  C.60°                  D.不能确定

查看答案和解析>>

在正方体AC1中, M为棱DD1的中点, O为底面ABCD的中心, P为棱A1B1上任意一点, 则直线OP与AM所成的角为 (    )

    A.30° B.60°    C.90°     D.120°

 

查看答案和解析>>

(12分)

学校欲在操场边上一直角三角形空地ABC上种植草坪,并需铺设一根水管EF(E在AC上,F在AB上)用于灌溉,已知∠A=30°,∠C=90°,BC=2a,D是BC中点,为确保灌溉的效果,铺设时要求∠EDF=60°。现有两种方案可供参考。甲方案:取AC的中点E铺设水管;乙方案:取AB的中点F铺设水管。

(1)比较甲乙两种方案,哪一种方案更合理(EF的长较小的合理);

(2)学校研究小组通过研究得出:无论D在BC的什么位置,总存在E,F两点,使△DEF为正三角形。试证明该结论的正确性。

 

 

查看答案和解析>>


同步练习册答案