如图:等腰直角三角形ABC位于第一象限.AB=AC=2.直角顶点A在直线y=x上.其中A点的横坐标为1.且两条直角边AB.AC分别平行于x轴.y轴.若双曲线y= 与△ABC有交点.则k的取值范围是 A.1<k<2 B.1≤k≤3 C.1≤k≤4 D.1≤k<4 查看更多

 

题目列表(包括答案和解析)

(2008•荆州)如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.

查看答案和解析>>

(2008•荆州)如图,等腰直角三角形纸片ABC中,AC=BC=4,∠ACB=90°,直角边AC在x轴上,B点在第二象限,A(1,0),AB交y轴于E,将纸片过E点折叠使BE与EA所在直线重合,得到折痕EF(F在x轴上),再展开还原沿EF剪开得到四边形BCFE,然后把四边形BCFE从E点开始沿射线EA平移,至B点到达A点停止.设平移时间为t(s),移动速度为每秒1个单位长度,平移中四边形BCFE与△AEF重叠的面积为S.
(1)求折痕EF的长;
(2)是否存在某一时刻t使平移中直角顶点C经过抛物线y=x2+4x+3的顶点?若存在,求出t值;若不存在,请说明理由;
(3)直接写出S与t的函数关系式及自变量t的取值范围.

查看答案和解析>>

(2008•铜仁地区)如图,在直角坐标系中,△ABC满足,∠C=90°,AC=4,BC=2,点A、C分别在x、y轴上,当A点从原点开始在x轴正半轴上运动时,点C随着在y轴正半轴上运动.
(1)当A点在原点时,求原点O到点B的距离OB;
(2)当OA=OC时,求原点O到点B的距离OB.

查看答案和解析>>

(2008•湘西州)如图,平面直角坐标系中有一个边长为2的正方形AOBC,M为OB的中点,将△AOM沿直线AM对折,使O点落在O′处,连接OO′,过O′点作O′N⊥OB于N.
(1)写出点A、B、C的坐标;
(2)判断△AOM与△ONO′是否相似,若是,请给出证明;
(3)求O′点的坐标.

查看答案和解析>>

(2008•湘西州)如图,平面直角坐标系中有一个边长为2的正方形AOBC,M为OB的中点,将△AOM沿直线AM对折,使O点落在O′处,连接OO′,过O′点作O′N⊥OB于N.
(1)写出点A、B、C的坐标;
(2)判断△AOM与△ONO′是否相似,若是,请给出证明;
(3)求O′点的坐标.

查看答案和解析>>


同步练习册答案