(2)因为反比例函数的图象分别在第一.三象限内. 查看更多

 

题目列表(包括答案和解析)

某大型生活超市销售一种进口奶粉A,从去年1至7月,这种奶粉的进价一路攀升,每罐A奶粉的进价y1与月份x(1≤x≤7,且x为整数),之间的函数关系式如下表:
月份x1234567
y1(元/千克)230240250260270280290
随着我国对一些国家进出口关税的调整,该奶粉的进价涨势趋缓,在8至12月份每罐奶粉A的进价y2与月份x(8≤x≤12,且x为整数)之间存在如下图所示的变化趋势.
(1)请观察表格和图象,用所学过的一次函数、反比例函数、二次函数的有关知识分别直接写出y1与x和y2与x的函数关系式.
(2)若去年该奶粉的售价为每罐360元,且销售该奶粉每月必须支出(除进价外)的固定支出为4000元,已知该奶粉在1月至7月的销量p1(罐)与月份x满足:p1=30x+240;8月至12月的销量p2(罐)与月份x满足:p2=-30x+750;则该奶粉在第几月销售时,可使该月所获得的利润最大?并求出此时的最大利润.
(3)今年1月到4月,受到国际方面因素的影响,该进口奶粉的进价进行调整,每月进价均比去年12月的进价上涨15元,且每月的固定支出(除进价外)增加了15%,已知该进口奶粉的售价在去年的基础上提高了m%(m<100),与此同时每月的销量均在去年12月的基础上减少了0.2m%,这样销售下去要使今年1至4月的总利润为122000元,试求出m的值.(m取整数值)(参考数据:532=2809,542=2916,552=3025,562=3136)

查看答案和解析>>

反比例函数中系数k的几何意义

  反比例函数y=(k≠0)任取一点M(a,b),过M作MA⊥x轴,MB⊥y轴,所得矩形OAMB的面积为S=MA·MB=|b|·|a|=|ab|.又因为b=,故ab=k,所以S=|k|(如图(1)).

  这就是说,过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.这就是k的几何意义,会给解题带来方便.现举例如下:

  例1:如(2)图,已知点P1(x1,y1)和P2(x2,y2)都在反比例函数y=(k<0)的图像上,试比较矩形P1AOB与矩形P2COD的面积大小.

  解答:=|k|

  =|k|

  故

  例2:如图(3),在y=(x>0)的图像上有三点A、B、C,经过三点分别向x轴引垂线,交x轴于A1、B1、C1三点,连结OA、OB、OC,记△OAA1、△OBB1、△OCC1的面积分别为S1、S2、S3,则有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故选A.

  例3:一个反比例函数在第三象限的图像如图(4)所示,若A是图像任意一点,AM⊥x轴,垂足为M,O是原点,如果△AOM的面积是3,那么这个反比例函数的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲线在第三象限

  ∴k>0∴k=6

  ∴所以反比例函数的解析式为y=

  根据是述意义,请你解答下题:

  如图(5),过反比例函数y=(x>0)的图像上任意两点A、B分别作轴和垂线,垂足分别为C、D,连结OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小关系不能确定

查看答案和解析>>


同步练习册答案