若点D与O重合时.OC=CD,∴ 查看更多

 

题目列表(包括答案和解析)

将一副三角板中的两块三角板重合放置,其中45°和30°的两个角顶点重合在一起.
(1)如图1所示,边OA与OC重合,恰好CD∥AB,则∠BOD=
15°
15°

(2)三角板△COD的位置保持不动,将三角板△AOB绕点O顺时针方向旋转,如图2,此时CD∥OA,求出∠BOD的大小;
(3)若将三角板△AOB绕点O旋转一周过程中,除图1、图2外,是否还存在△AOB中的一边与CD平行的情况?如果存在,请你画出图形,并直接写出相应的∠BOD的大小;如果不存在,请说明理由.

查看答案和解析>>

将一副三角板中的两块三角板重合放置,其中45°和30°的两个角顶点重合在一起.
(1)如图1所示,边OA与OC重合,恰好CD∥AB,则∠BOD=______;
(2)三角板△COD的位置保持不动,将三角板△AOB绕点O顺时针方向旋转,如图2,此时CD∥OA,求出∠BOD的大小;
(3)若将三角板△AOB绕点O旋转一周过程中,除图1、图2外,是否还存在△AOB中的一边与CD平行的情况?如果存在,请你画出图形,并直接写出相应的∠BOD的大小;如果不存在,请说明理由.

查看答案和解析>>

如图,AB是⊙的直径,PAB上一点(与点AB不重合)QPAB,垂足为P点,直线QA交⊙C点,过点C作⊙的切线交直线QP于点D.则△CDQ是等腰三角形.对上述命题证明如下:

证明:连接OC

OA=OC,∴∠A=1

CD切⊙C点,

∴∠OCD=90°,∴∠1+2=90°,∴∠A+2=90°

在Rt△QPA中,∠QPA=90°

∴∠A+Q=90°,∴∠2=Q,∴DQ=DC

即△CDQ是等腰三角形.

问题:对上述命题,当点PBA的延长线上时,其他条件不变.

如图所示,结论CDQ是等腰三角形还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

已知∠AOB=90°,在∠AOB的平分线OM上有一点C,OC=
2
,将一个三角板的直角顶点与C重合,它的两条直角边分别与OA,OB(或它们的反向延长线)相交于点D,E.精英家教网
(1)当三角板绕点C旋转到CD与OA垂直时(如图1),求证:OD+OE=2.
(2)当三角板绕点C旋转到CD与OA不垂直时:
①在图2这种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD,OE之间又有怎样的数量关系?请写出你的猜想,并给予证明.
②在图3这种情况下,上述结论是否还成立?若成立,请给予证明;若不成立,线段OD,OE之间又有怎样的数量关系?请直接写出你的猜想,并给予证明.

查看答案和解析>>

已知:如图所示,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D,则△CDQ是等腰三角形.对上述命题证明如下:

证明:连接OC.

∵OA=OC,

∴∠A=∠1.

∵CD切⊙O于C点,

∴∠OCD=90°.

∴∠1+∠2=90°.

∴∠A+∠2=90°.

在Rt△QPA中,∠QPA=90°,

∴∠A+∠Q=90°.

∴∠2=∠Q.∴DQ=DC.

即△CDQ是等腰三角形

问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>


同步练习册答案