③当t>0时.由().∴ ∴. () 查看更多

 

题目列表(包括答案和解析)

f(x)是连续的偶函数,且当x>0时,f(x)是单调函数,则满足f(x)=f()的所有x之和为________.

思路 由函数联想图像,若x都在y轴一侧,则这两个式子相等;若在y轴两侧,则其互为相反数.

查看答案和解析>>

已知

(1)求的单调区间;

(2)证明:当时,恒成立;

(3)任取两个不相等的正数,且,若存在使成立,证明:

【解析】(1)g(x)=lnx+=        (1’)

当k0时,>0,所以函数g(x)的增区间为(0,+),无减区间;

当k>0时,>0,得x>k;<0,得0<x<k∴增区间(k,+)减区间为(0,k)(3’)

(2)设h(x)=xlnx-2x+e(x1)令= lnx-1=0得x=e, 当x变化时,h(x),的变化情况如表

x

1

(1,e)

e

(e,+)

 

0

+

h(x)

e-2

0

所以h(x)0, ∴f(x)2x-e                    (5’)

设G(x)=lnx-(x1) ==0,当且仅当x=1时,=0所以G(x) 为减函数, 所以G(x)  G(1)=0, 所以lnx-0所以xlnx(x1)成立,所以f(x) ,综上,当x1时, 2x-ef(x)恒成立.

(3) ∵=lnx+1∴lnx0+1==∴lnx0=-1      ∴lnx0 –lnx=-1–lnx===(10’)  设H(t)=lnt+1-t(0<t<1), ==>0(0<t<1), 所以H(t) 在(0,1)上是增函数,并且H(t)在t=1处有意义, 所以H(t) <H(1)=0∵=

∴lnx0 –lnx>0, ∴x0 >x

 

查看答案和解析>>

已知在点(1,f(1))处的切线方程为

(1)求f(x)的表达式;

(2)若f(x)满足恒成立,则称f(x)为g(x)的一个“上界函数”,如果f(x)为的一个“上界函数”,求t的取值范围;

(3)当m>0时讨论在区间(0,2)上极值点的个数。

 

查看答案和解析>>

已知向量ab满足|a|=|b|=1,且|ka+b|=|a-kb|(k>0),令f(k)=a·b。
(1)求f(k)=a·b(用k表示);
(2)当k>0时,f(k)≥x2-2tx-对任意的t∈[-1,1]恒成立,求实数x的取值范围。

查看答案和解析>>

已知函数f(x)=log
1
2
(x+1),当点P(x0,y0)在y=f(x)的图象上移动时,点Q(
x0-t+1
2
,y0)(t∈R)在函数y=g(x)的图象上移动.
(1)若点P坐标为(1,-1),点Q也在y=f(x)的图象上,求t的值;
(2)求函数y=g(x)的解析式;
(3)当t>0时,试探求一个函数h(x)使得f(x)+g(x)+h(x)在限定定义域为[0,1)时有最小值而没有最大值.

查看答案和解析>>


同步练习册答案