题目列表(包括答案和解析)
解::因为
,所以f(1)f(2)<0,因此f(x)在区间(1,2)上存在零点,又因为y=
与y=-
在(0,+
)上都是增函数,因此
在(0,+
)上是增函数,所以零点个数只有一个方法2:把函数
的零点个数个数问题转化为判断方程
解的个数问题,近而转化成判断
与
交点个数问题,在坐标系中画出图形
由图看出显然一个交点,因此函数
的零点个数只有一个
袋中有50个大小相同的号牌,其中标着0号的有5个,标着n号的有n个(n=1,2,…9),现从袋中任取一球,求所取号码的分布列,以及取得号码为偶数的概率.
已知m>1,直线
,椭圆C:
,
、
分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点
时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A![]()
、△B![]()
的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[
【解析】第一问中因为直线
经过点
(
,0),所以
=
,得
.又因为m>1,所以
,故直线的方程为![]()
第二问中设
,由
,消去x,得
,
则由
,知
<8,且有![]()
由题意知O为![]()
的中点.由
可知
从而
,设M是GH的中点,则M(
).
由题意可知,2|MO|<|GH|,得到范围
(本小题满分14分)
有一隧道既是交通拥挤地段,又是事故多发地段.为了保证安全,交通部门规定,隧道内的车距
正比于车速
的平方与车身长
的积,且车距不得小于一个车身长
(假设所有车身长均为
).而当车速为
时,车距为1.44个车身长.
⑴求通过隧道的最低车速;
⑵在交通繁忙时,应规定怎样的车速,可以使隧道在单位时段内通过的汽车数量
最多?
| 刹车时的车速(km/h) | 0 | 10 | 20 | 30 | 40 | 50 | 60 |
| 刹车距离(m) | 0 | 0.3 | 1.0 | 2.1 | 3.6 | 5.5 | 7.8 |
从以下两个小题中选做一题(只能做其中一个,做两个按得分最低的记分).(甲)一水池有2个进水口,1个出水口,每口进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)
给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定能确定正确的论断序号是________.
(乙)深圳市的一种特色水果上市时间仅能持续5个月,预测上市初期和后期会因供不应求使价格呈连续上涨态势,而中期又将出现供大于求使价格连续下跌,现有三种价格模拟函数.①f(x)p·qx;②f(x)=px2+qx+1;③f(x)=x(x-q)2+p
(以上三式中p,q均为常数,且q>1,x=0表示4月1日,x=1表示5月1日,依次类推).
(1)为准确研究其价格走势,应选________种价格模拟函数.
(2)若f(x)=4,f(2)=6,预测该果品在________月份内价格下跌.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com