所以,当时,方程无解; 查看更多

 

题目列表(包括答案和解析)

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>

若下列方程:,至少有一个方程有实根,试求实数的取值范围.

解:设三个方程均无实根,则有

解得,即

所以当时,三个方程至少有一个方程有实根.

 

查看答案和解析>>

设函数y=f(x)是定义域为R的奇函数,且满足f(x-2)= -f(x)对一切x∈R恒成立,当x∈[0,1]时,
f(x)=x3,给出下列四个命题:
①f(x)是以4为周期的周期函数;
②f(x)在[1,3]上的解析式为f(x)=(2-x)3
③f(x)图象的对称轴有x=±1;
④f(x)在点(,f())处的切线方程为3x+4y=5;
⑤函数f(x)在R上无最大值。
其中正确命题的序号是(    )(写出所有正确命题的序号)。

查看答案和解析>>


同步练习册答案