题目列表(包括答案和解析)
函数
是定义在
上的奇函数,且
。
(1)求实数a,b,并确定函数
的解析式;
(2)判断
在(-1,1)上的单调性,并用定义证明你的结论;
(3)写出
的单调减区间,并判断
有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
【解析】本试题主要考查了函数的解析式和奇偶性和单调性的综合运用。第一问中,利用函数
是定义在
上的奇函数,且
。
解得
,![]()
(2)中,利用单调性的定义,作差变形判定可得单调递增函数。
(3)中,由2知,单调减区间为
,并由此得到当,x=-1时,
,当x=1时,![]()
解:(1)
是奇函数,
。
即
,
,
………………2分
,又
,
,
,![]()
(2)任取
,且
,
,………………6分
,![]()
,
,
,
,
在(-1,1)上是增函数。…………………………………………8分
(3)单调减区间为
…………………………………………10分
当,x=-1时,
,当x=1时,
。
设函数
.
(1)、当
时,用函数单调性定义求
的单调递减区间(6分)
(2)、若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为
和
,求
恒成立的概率; (8分)
设函数
.
(1)、(理)当
时,用函数单调性定义求
的单调递减区间(6分)
(2)、若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为
和
,求
恒成立的概率; (8分)
设函数
.
(1)、(理)当
时,用函数单调性定义求
的单调递减区间(6分)
(2)、若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为
和
,求
恒成立的概率; (8分)
设函数
.
(1)、当
,解不等式
(6分)
(2)、若连续掷两次骰子(骰子六个面上分别标以数字1,2,3,4,5,6)得到的点数分别作为
和
,求
恒成立的概率; (8分)
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com