因此有故存在实数m. 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=lnx,g(x)=
a
x
(a>0),设F(x)=f(x)+g(x)

(I)求函数F(x)的单调区间;
(II)若以函数y=F(x)(x∈(0,3])的图象上任意一点P(x0,y0)为切点的切线的斜率k≤
1
3
恒成立,求实数a的最小值;
(III)是否存在实数m,使得函数y=g(
2a
x2+1
)+m-1
的图象与函数y=f(1+x2)的图象恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0.
(1)求f(
1
2
)
的值,试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(2)一个各项均为正数的数列{an},它的前n项和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求数列{an}的通项公式;
(3)在(2)的条件下,是否存在实数M,使2na1a2an≥M•
2n+3
•(2a1-1)•(2a2-1)…(2an-1)
对于一切正整数n均成立?若存在,求出M的范围;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=
1
3
ax3-
1
4
x2
+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.
(1)求a,c,d的值;
(2)若h(x)=
3
4
x2-bx+
b
2
-
1
4
,解不等式f′(x)+h(x)<0;
(3)是否存在实数m,使函数g(x)=f′(x)-mx在区间[m,m+2]上有最小值-5?若存在,请求出实数m的值;若不存在,请说明理由.

查看答案和解析>>

(2012•衡阳模拟)已知函数f(x)=(x2+ax+b)ex,(x∈R)在x=1处取得极值.
(1)求a与b的关系式(用a表示b),并求f(x)的单调区间;
(2)是否存在实数m,使得对任意a∈(0,1)及x1,x2∈[0,2]总有|f(x1)-f(x2)|<[(m+2)a+m2]e+e2恒成立,若存在,求出m的范围;若不存在,请说明理由.

查看答案和解析>>

设函数f(x)=xlnx(x>0),g(x)=-x+2,
(I)求函数f(x)在点M(e,f(e))处的切线方程;
(II)设F(x)=ax2-(a+2)x+f′(x)(a>0),讨论函数F(x)的单调性;
(III)设函数H(x)=f(x)+g(x),是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y=t与曲线y=H(x)(x∈[
1e
,e])
都有公共点?若存在,求出最小的实数m和最大的实数M;若不存在,说明理由.

查看答案和解析>>


同步练习册答案